Biology Reference
In-Depth Information
64. Gordon GW, Berry G, Liang XH, Levine B, Herman B. Quantitative fluorescence
resonance energy transfer measurements using fluorescence microscopy. Biophys J
1998; 74 :2702-13.
65. Xia Z, Liu Y. Reliable and global measurement of fluorescence resonance energy trans-
fer using fluorescence microscopes. Biophys J 2001; 81 :2395-402.
66. Hoppe A, Christensen K, Swanson JA. Fluorescence resonance energy transfer-based
stoichiometry in living cells. Biophys J 2002; 83 :3652-64.
67. Jalink K, van Rheenen J. FilterFRET: quantitative imaging of sensitized emission.
In: Gadella TWJ, editor. FRET and FLIM techniques . Burlington: Academic Press;
2009.
68. Hodgson L, Shen F, Hahn K. Biosensors for characterizing the dynamics of Rho family
GTPases in living cells. Curr Protoc Cell Biol 2010; 46 :14.11.1-14.11.26.
69. Brito M, Guiot E, Vincent P. Imaging PKA activation inside neurons in brain slice
preparations. Neuromethods, 2012; 68 :237-50.
70. Hodgson L, Nalbant P, Shen F, Hahn K. Imaging and photobleach correction of mero-
CBD, sensor of endogenous Cdc42 activation. Methods Enzymol 2006; 406 :140-56.
71. Depry C, Zhang J. Visualization of kinase activity with FRET-based activity biosen-
sors. Curr Protoc Mol Biol 2010; 18 :18.15.1-18.15.9.
72. Ting AY, Kain KH, Klemke RL, Tsien RY. Genetically encoded fluorescent reporters
of protein tyrosine kinase activities in living cells. PNAS 2001; 98 (26):15003-8.
73. Klarenbeek JB, Goedhart J, Hink MA, Gadella TWJ, Jalink K. A mTurquoise-based
cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range.
PLoS One 2011; 6 (4):e19170.
74. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2 þ indicators with
greatly improved fluorescence properties. J Biol Chem 1985; 260 (6):3440-50.
75. Hinde E, Digman MA, Welch C, Hahn KM, Gratton E. Biosensor F¨ rster resonance
energy transfer detection by the phasor approach to fluorescence lifetime imaging mi-
croscopy. Microsc Res Tech 2011; 75 (3):271-81.
76. Ll`res D, Swift S, Lamond AI. Detecting protein-protein interactions in vivo with
FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM). Curr
Protoc Cytom 2007; 12 :12.10.1-12.10.19.
77. Elder AD, Frank JH, Swartling J, Dai X, Kaminski CF. Calibration of a wide-field
frequency-domain fluorescence lifetime microscopy system using light emitting diodes
as light sources. J Microsc (Oxford) 2006; 224 :166-80.
78. Squire A, Verveer PJ, Bastiaens PIH. Multiple frequency fluorescence lifetime imaging
microscopy. J Microsc 2000; 197 :136-49.
79. Lakowicz JR, Laczko G, Cherek H, Gratton E, Limkeman M. Analysis of fluorescence
decay kinetics from variable-frequency phase shift and modulation data. Biophys J
1984; 46 :463-77.
80. Verveer PJ, Bastiaens PIH. Evaluation of global analysis algorithms for single frequency
fluorescence lifetime imaging microscopy data. J Microsc 2003; 209 (1):1-7.
81. Esposito A, Gerritsen HC, Wouters FS. Fluorescence lifetime heterogeneity resolution
in the frequency domain by lifetime moments analysis. Biophys J 2005; 89 :4286-99.
82. Maus M, et al. An experimental comparison of the maximum likelihood estimation and
nonlinear least-squares fluorescence lifetime analysis of single molecules. Anal Chem
2001; 73 (9):2078-86.
83. Laurence TA, Chromy BA. Efficient maximum likelihood estimator fitting of histo-
grams. Nat Methods 2010; 7 (5):338-9.
84. Barber PR, Ameer-Beg SM, Pathmananthan S, Rowley M, Coolen ACC. A Bayesian
method for single molecule, fluorescence burst analysis. Biomed Opt Express 2010; 1
(4):1148-58.
85. K¨ llner M, Wolfrum J. How many photons are necessary for fluorescence-lifetime
measurements? Chem Phys Lett 1992; 200 :199-204.
Search WWH ::




Custom Search