Biology Reference
In-Depth Information
42. Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, et al. A
genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci USA
2008; 105 (49):19264-9.
43. Dunn TA, Wang CT, Colicos MA, Zaccolo M, DiPilato LM, Zhang J, et al. Imaging
of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations
in second-messenger cascades. J Neurosci 2006; 26 (49):12807-15.
44. Davidson MW, Campbell RE. Engineered fluorescent proteins: innovations and appli-
cations. Nat Methods 2009; 6 (10):713-7.
45. Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat
Methods 2005; 2 (12):905-9.
46. Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol 2003; 21 (11):1387-95.
47. Jares-Erijman EA, Jovin TM. Imaging molecular interactions in living cells by FRET
microscopy. Curr Opin Chem Biol 2006; 10 (5):409-16.
48. Depry C, Zhang J. Visualization of kinase activity with FRET-based activity biosen-
sors. Curr Protoc Mol Biol 2010; Chapter 18 : Unit 18.15.
49. Jalink K, van Rheenen J. (2009) FilterFRET: quantitative imaging of sensitized
emission. In: Laboratory techniques in biochemistry and molecular biology vol. 33: FRET
and FLIM techniques. Ed. Gadella, T.W.J. Academic Press, Burlington, pp. 289-349.
50. Schechter MB, Burger G, Widefield application letter: FRET sensitized emission wiz-
ard widefield. reSOLUTION, vol. 4; 2009.
51. Borner S, Schwede F, Schlipp A, Berisha F, Calebiro D, Lohse MJ, et al. FRET
measurements of intracellular cAMP concentrations and cAMP analog permeability
in intact cells. Nat Protoc 2011; 6 (4):427-38.
52. Hempel CM, Vincent P, Adams SR, TsienRY, SelverstonAI. Spatio-temporal dynamics
of cyclic AMP signals in an intact neural circuitm. Nature 1996; 384 (6605):166-9.
53. Garini Y, Young IT, McNamara G. Spectral imaging: principles and applications. Cyto-
metry A 2006; 69 (8):735-47.
54. Booth MJ, Wilson T. Low-cost, frequency-domain, fluorescence lifetime confocal
microscopy. J Microsc (Oxford) 2004; 214 :36-42.
55. Gadella TWJ, Jovin TM, Clegg RM. Fluorescence lifetime imaging microscopy
(Flim)—spatial-resolution of microstructures on the nanosecond time-scale. Biophys
Chem 1993; 48 (2):221-39.
56. Gratton E, Breusegem S, Sutin J, Ruan QQ. Fluorescence lifetime imaging for the
two-photon microscope: time-domain and frequency-domain methods. J Biomed
Opt 2003; 8 (3):381-90.
57. Herman P, Maliwal BP, Lin HJ, Lakowicz JR. Frequency-domain fluorescence
microscopy with the LED as a light source. J Microsc (Oxford) 2001; 203 :176-81.
58. van Geest LK, Stoop KWJ. FLIM on a wide field fluorescence microscope. Lett Pept Sci
2003; 10 (5-6):501-10.
59. Leray A, Riquet FB, Richard E, Spriet C, Trinel D, Heliot L. Optimized protocol of a
frequency domain fluorescence lifetime imaging microscope for FRET measurements.
Microsc Res Tech 2009; 72 (5):371-9.
60. Schneider PC, Clegg RM. Rapid acquisition, analysis, and display of fluorescence
lifetime-resolved images for real-time applications. Rev Sci Instrum 1997; 68 (11):4107-19.
61. Greger K, Neetz MJ, Reynaud EG, Stelzer EH. Three-dimensional fluorescence life-
time imaging with a single plane illumination microscope provides an improved signal
to noise ratio. Opt Express 2011; 19 (21):20743-50.
62. Van Munster EB, Goedhart J, Kremers GJ, Manders EMM, Gadella TWJ. Combina-
tion of a spinning disc confocal unit with frequency-domain fluorescence lifetime
imaging microscopy. Cytometry A 2007; 71A (4):207-14.
63. Buranachai C, Kamiyama D, Chiba A, Williams BD, Clegg RM. Rapid frequency-
domain FLIM spinning disk confocal microscope: lifetime resolution, image improve-
ment and wavelet analysis. J Fluoresc 2008; 18 :929-42.
Search WWH ::




Custom Search