Biomedical Engineering Reference
In-Depth Information
108. Coyle AJ, Gutierrez-Ramos J-C. (2001) The expanding B7
superfamily: increasing complexity in costimulatory signals
regulating T cell function. Nature Immunol. 2, 203-209.
109. Watts TH. (2005) TNF/TNFR family members in costimu-
lation of T cell responses. Annu. Rev. Immunol. 23, 23-68.
110. Li XC, Rothstein DM, Sayegh MH. (2009) Costimulatory
pathways in transplantation: challenges and new develop-
ments. Immunol. Rev. 229, 271-293.
111. Okazaki T, Honjo T. (2007) PD-1 and PD-1 ligands: from
discovery to clinical application. Int. Immunol. 19, 813-824.
112. Cai G, Freeman GJ. (2009) The CD160, BTLA, LIGHT-
/HVEM pathway: a bidirectional switch regulating T-cell
activation. Immunol. Rev. 229, 244-258.
113. del Rio ML, Lucas CL, Buhler L, Rayat G, Rodriguez-
Barbosa JI. (2010) HVEM/LIGHT/BTLA/CD160 cosignal-
ing pathways as targets for immune regulation. J. Leukoc.
Biol. 87, 223-235.
114. Nielsen UB, Adams GP, Weiner LM, Marks JD. (2000)
Targeting of bivalent anti-ErbB2 diabody antibody fragments
to tumor cells is independent of the intrinsic antibody affinity.
Cancer Res. 60, 6434-6440.
115. Lanzavecchia A. (2000) Understanding dendritic cell and T-
lymphocyte traffic through the analysis of chemokine recep-
tor expression. Immunol. Rev. 177, 134-140.
116. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL.
(2004) SHP-1 and SHP-2 associate with immunoreceptor
tyrosine-based switch motif of programmed death 1 upon
primary human T cell stimulation, but only receptor ligation
prevents T cell activation. J. Immunol. 173, 945-954.
117. Keir ME, Francisco LM, Sharpe AH. (2007) PD-1 and its
ligands in T-cell immunity. Curr. Opin. Immunol. 19, 309-314.
118. Butte MJ, Pena-Cruz V, Kim MJ, Freeman G.J, Sharpe AH.
(2008) Interaction of human PD-L1 and B7-1. Mol. Immunol.
45, 3567-3572.
119. Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M,
et al. (2010) Programmed death-1-induced interleukin-10
production by monocytes impairs CD4 þ T cell activation
during HIV infection. Nat. Med. 16, 452-459.
120. Tanaka K, Albin MJ, Yuan X, Yamaura K, Habicht A,
Murayama T, et al. (2007) PDL1 is required for peripheral
transplantation tolerance and protection from chronic allo-
graft rejection. J. Immunol. 179, 5204-5210.
121. Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba
H, et al. (2003) The programmed death-1 (PD-1) pathway
regulates autoimmune diabetes in nonobese diabetic (NOD)
mice. J. Exp. Med. 198, 63-69.
122. Mozaffarian N, Wiedeman AE, Stevens AM. (2008) Active
systemic lupus erythematosus is associated with failure of
antigen-presenting cells to express programmed death ligand-
1. Rheumatology (Oxford) 47, 1335-1341.
123. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H,
Webster WS, et al. (2004) Costimulatory B7-H1 in renal cell
carcinoma patients: indicator of tumor aggressiveness and
potential therapeutic target. Proc. Natl. Acad. Sci. USA 101,
17174-17179.
124. Habicht A, Kewalaramani R, Vu MD, Demirci G, Blazar BR,
Sayegh MH, et al. (2007) Striking dichotomy of PD-L1 and
PD-L2 pathways in regulating alloreactive CD4( þ ) and CD8
( þ ) T cells in vivo. Am. J. Transplant. 7, 2683-2692.
125. Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V,
et al. (2011) The PDL1-PD1 axis converts human TH1 cells
into regulatory T cells. Sci. Transl. Med. 3(111) ra120.
126. Jain N, Nguyen H, Chambers C, Kang J. (2010) Dual function
of CTLA-4 in regulatory T cells and conventional T cells to
prevent multiorgan autoimmunity. Proc. Natl. Acad. Sci. USA
107, 1524-1528.
127. Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT,
Sharpe AH, et al. (2002) Antigen-specific regulatory T cells
develop via the ICOS-ICOS-ligand pathway and inhibit
allergen-induced airway hyperreactivity. Nat. Med. 8,
1024-1032.
128. Burmeister Y, Lischke T, Dahler AC, Mages HW, Lam KP,
Coyle AJ, et al. (2008) ICOS controls the pool size of effector-
memory and regulatory T cells. J. Immunol. 180, 774-782.
129. Herman AE, Freeman GJ, Mathis D, Benoist C. (2004)
CD4 þ CD25 þ T regulatory cells dependent on ICOS promote
regulation of effector cells in the prediabetic lesion. J. Exp.
Med. 199, 1479-1489.
130. Dai Z, Li Q, Wang Y, Gao G, Diggs LS, Tellides G, et al.
(2004) CD4 þ CD25 þ regulatory T cells suppress allograft
rejection mediated by memory CD8 þ T cells via a CD30-
dependent mechanism. J. Clin. Invest. 113, 310-317.
131. Zeiser R, Nguyen VH, Hou JZ, Beilhack A, Zambricki E,
Buess M, et al. (2007) Early CD30 signaling is critical for
adoptively transferred CD4 þ CD25 þ regulatory T cells in
prevention of acute graft-versus-host disease. Blood 109,
2225-2233.
132. Galli SJ. (1997) Complexity and redundancy in the patho-
genesis of asthma: reassessing the roles of mast cells and
T cells. J. Exp. Med. 186, 343-347.
133. Brown JM, Wilson TM, Metcalfe DD. (2008) The mast cell
and allergic diseases: role in pathogenesis and implications
for therapy. Clin. Exp. Allergy 38, 4-18.
134. Umetsu DT, Dekruyff RH. (2010) Natural killer T cells are
important in the pathogenesis of asthma: the many pathways
to asthma. J. Allergy Clin. Immunol. 125, 975-979.
135. Braun NA, Covarrubias R, Major AS. (2010) Natural killer
T cells and atherosclerosis: form and function meet patho-
genesis. J. Innate Immun. 2, 316-324.
136. Gomez-Diaz RA, Aguilar MV, Meguro EN, Marquez RH,
Magana EG, Martinez-Garcia MC, et al. (2011) The role of
natural killer T (NKT) cells in the pathogenesis of type 1
diabetes. Curr. Diabetes Rev. 7, 278-283.
137. Kopcow HD, Karumanchi SA. (2007) Angiogenic factors and
natural killer (NK) cells in the pathogenesis of preeclampsia.
J. Reprod. Immunol. 76, 23-29.
138. Sikora J, Mielczarek-Palacz A, Kondera-Anasz Z. (2011)
Role of natural killer cell activity in the pathogenesis of
endometriosis. Curr. Med. Chem. 18, 200-208.
139. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S,
Gibbs KD, Jr, et al. (2009) CD47 is an adverse prognostic
Search WWH ::




Custom Search