Biomedical Engineering Reference
In-Depth Information
60. Webster, T.J. et al., Enhanced functions of osteoblasts on nanophase ceramics, Biomaterials , 21,
1803, 2000.
61. Webster, T.J. et al., Enhanced osteoclast-like cell functions on nanophase ceramics, Biomaterials , 22,
1327, 2001.
62. Chu, P.K. et al., Plasma surface modifi cation of biomaterials, Mater. Sci. Eng . R Rep. , 36, 143, 2002.
63. Chu, P.K., Recent developments and applications of plasma immersion ion implantation (PIII), J. Vac.
Sci. Tech. B. , 22, 289, 2004.
64. Liu, X.Y. et al., Plasma-treated nanostructured TiO 2 surface supporting biomimetic growth of apatite,
Biomaterials , 26, 6143, 2005.
65. Li, P. et al., The role of hydrated silica, titania, and alumina in inducing apatite on implants, J. Biomed.
Mater. Res. , 28, 7, 1994.
66. Pan, J.M. et al., Interaction of water, oxygen and hydrogen with TiO 2 (110) surfaces having different
defect densities, J. Vac. Sci. Tech. A , 10, 2470, 1992.
67. Leconte, J. et al., Periodic ab initio study of the hydrogenated rutile TiO 2 (110) surface, Surf. Sci. , 497,
194, 2002.
68. Svetina, M. et al., Deposition of calcium ions on rutile (110): a fi rst-principles investigation, Acta Mater. ,
49, 2169, 2001.
69. Zhang, H. et al., Enhanced adsorption of molecules on surfaces of nanocrystalline particles, J. Phys.
Chem. B , 103, 4656, 1999.
70. Long, M. and Rack H.J., Titanium alloys in total joint replacement—a materials science perspective,
Biomaterials , 19, 1621, 1998.
71. Sioshansi, P. and Tobin, E.J., Surface treatment of biomaterials by ion beam processes , Surf. Coating
Tech . , 83, 175, 1996.
72. Li, P. et al., The role of hydrated silica, titania and alumina in inducing apatite on implants, J. Biomed.
Mater. Res. , 28, 7, 1994.
73. Pham, M.T. et al., Promoted hydroxyapatite nucleation on titanium ion implanted with sodium, Thin
Solid Films , 379, 50, 2000.
74. Rzeszutek, K. et al., in 5th Asian Symposium, Biomed. Mater. , Hong Kong, 169, 2001.
75. Kokubo, T. et al., In vivo apatite formation induced on titanium metal and its alloys by chemical treat-
ment, Key Eng. Mater. , 192-195, 3, 2001.
76. Kim, H.M. et al., Preparation of bioactive Ti and its alloys via simple chemical surface treatment,
J. Biomed. Mater. Res. , 32, 409, 1996.
77. Pham, M.T. et al, Surface stimuli to precipitating hydroxyapatite on titanium, J. Mater. Sci. Lett ., 20,
295, 2001.
78. Hanawa, T. et al., Early bone formation around calcium-ion-implanted titanium inserted into rat tibia,
J. Biomed. Mater. Res. , 36, 131, 1997.
79. Kwok, S.C.H., Wang, J., and Chu, P.K., Surface energy, wettability, and blood compatibility of phospho-
rus doped diamond-like carbon fi lms. Diam. Relat. Mater. , 14, 78, 2005.
80. Li, L.H. et al., Hybrid evaporation-glow discharge source for plasma immersion ion implantation,
Rev. Sci. Instrum. , 74, 4301, 2003.
81. Tian, X.B. et al., Flexible system for multiple plasma immersion ion implantation—deposition proc-
esses, Rev. Sci. Instrum. , 74, 5137, 2003.
82. Liu, X.Y. et al., Structure and properties of Ca plasma implanted titanium, Surf. Coating Tech. ,
191, 43, 2005.
83. Hanawa, T., In vivo metallic biomaterials and surface modifi cation, Mater. Sci. Eng. A , 267, 260, 1999.
84. Maitz, M.F. et al., Bioactivity of titanium following sodium plasma immersion ion implantation and
deposition, Biomaterials , 26, 5465, 2005.
85. Ryhanen, J., Biocompatibility Evaluation of NiTi Shape Memory Alloy , University of Oulu, Finland, 1999.
86. Chen, M.F. et al., Bioactive NiTi shape memory alloy used as bone bonding implants, Mater. Sci. Eng. C ,
24, 497, 2004.
87. Cragg, A.H. et al., Nitinol intravascular stent: results of preclinical evaluation, Radiology , 189, 775, 1993.
88. Dai, K. and Chu, Y., Studies and applications of NiTi shape memory alloys in the medical fi eld in China,
Biomed. Mater. Eng. , 6, 233, 1996.
89. Es-Souni, M. and Brandies, H.F., On the transformation behaviour, mechanical properties and biocompat-
ibility of two NiTi-based shape memory alloys: NiTi42 and NiTi42Cu7, Biomaterials , 22, 2153, 2001.
90. Gil, F.X., Planell, J.A., and Manero, J.M., Relevant aspects in the clinical applications of NiTi shape
memory alloys, J. Mater. Sci. Mat. M ., 7, 403, 1996.
Search WWH ::




Custom Search