Biomedical Engineering Reference
In-Depth Information
31. Lu, X., Plasma immersion ion implantation for SOI synthesis: SIMOX and ion-cut, J. Electron. Mater. ,
27, 1059, 1998.
32. Zeng, Z.M. et al., Improvement of tribological properties of 9Cr18 bearing steel using metal and nitro-
gen plasma-immersion ion implantation, Surf. Coating Tech. , 115, 234, 1999.
33. Yu, C. and Cheung, N.W., Trench doping conformality by plasma immersion ion implantation (PIII),
IEEE Electron. Device. Lett. , 15, 196,1994.
34. Bernstein, J.D. et al., Hydrogenation of polycrystalline silicon thin fi lm transistors by plasma ion
implantation, IEEE Electron Device Lett. , 16, 421, 1995.
35. Leng, Y.X., Properties of titanium oxide biomaterials synthesized by titanium plasma immersion ion
implantation and reactive ion oxidation, Thin Solid Films , 377, 573, 2000.
36. Chu, P.K., Third-generation plasma immersion ion implanter for biomedical materials and research,
Rev. Sci. Instrum. , 72, 1660, 2001.
37. Carlisle, E.M., Silicon as an essential trace element in animal nutrition, in Silicon Biochemistry , Evered,
D. and O'Connor, M., Eds., John Wiley & Sons, New York, 1986, 123.
38. Hidebrand, M. et al., Silicon-responsive cDNA clones isolated from the marine diatom Cylindrotheca
fusiformis , Gene , 132, 213, 1993.
39. Hench, L.L., Life and death: the ultimate phase transformation, Thermochim. Acta , 280/281, 1, 1996.
40. Xynos, D. et al., Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro :
implications and applications for bone tissue engineering, Calcif. Tissue Int ., 67, 321, 2000.
41. Xynos, I.D. et al., Ionic products of bioactive glass dissolution increase proliferation of human oste-
oblasts and induce insulin-like growth factor II mRNA expression and protein synthesis, Biochem.
Biophys. Res. Comm. , 276, 461, 2000.
42. Wise, K.D. and Najali, K., VLSI sensors in medicine, in VLSI in Medicine , Einspruch, N.G. and Gold,
R.D., Eds., Academic Press, New York, 1989.
43. Madou, M. and Tierney, M.J., Required technology breakthroughs to assume widely accepted biosen-
sors, Appl. Biochem. Biotechnol ., 41, 109, 1993.
44. Bowman, L. and Mendl, J.D., The packaging of implantable integrated sensors, IEEE Trans. Biomed.
Eng. , 33, 248, 1986.
45. Canham, L.T., Bioactive silicon structure fabrication through nanoetching techniques, Adv. Mater. , 7,
1033, 1995.
46. Dahmen, C. et al., Surface functionalization of amorphous silicon and silicon suboxides for biological
applications, Thin Solid Films , 427, 201, 2003.
47. Cho, S.B. et al., Dependence of apatite formation on silica gel on its structure: effect of heat treatment,
J. Am. Ceram. Soc. , 78, 1769, 1995.
48. Fan, Z.N. et al., Surface hydrogen incorporation and profi le broadening caused by sheath expansion in
hydrogen plasma immersion ion implantation, IEEE Trans. Plasma Sci. , 28, 371, 2000.
49. Liu, X.Y. et al., Biomimetic growth of apatite on hydrogen-implanted silicon, Biomaterials , 25,
5575, 2004.
50. Pankove, J.I. and Johnson N.M., Hydrogen in semiconductors, Semiconductors and Semimetals ,
Academic Press, Boston, MA, 1991, 34.
51. Wang, L.W. et al., Damage in hydrogen plasma implanted silicon, J. Appl. Phys. , 90, 1735, 2001.
52. Tong, Q.Y. and Gösele, U.M., Wafer bonding and layer splitting for microsystems, Adv. Mater. , 11,
1409, 1999.
53. Li, P. and Zhang, F., The electrochemistry of glass surface and its application to bioactive glass in
solution, J. Non-Cryst. Solids , 119, 112, 1990.
54. Li, P. et al., A role of hydrated silica, titania, and alumina in forming biologically active bone-like apa-
tite on implant, J. Biomed. Mater. Res. , 28, 7, 1994.
55. Takadama, H. et al., Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX
study in vitro , Chem. Mater. , 13, 1108, 2001.
56. Kurzweg, H. et al., Development of plasma-sprayed bioceramic coatings with bond coats based on
titania and zirconia, Biomaterials , 19, 1507, 1998.
57. Nie, X. and Leyland, A., Deposition of layered bioceramic hydroxyapatite/TiO 2 coatings on titanium alloys
using a hybrid technique of micro-arc oxidation and electrophoresis, Surf. Coating Tech ., 125, 407, 2000.
58. Ratner, B.D., A perspective on titanium biocompatibility, in Titanium in Medicine , Brunette, D.M. et al.,
Eds., Springer, Berlin, 2001, 1.
59. Webster, T.J., Siegel, R.W., and Bizios, R., Osteoblast adhesion on nanophase ceramics, Biomaterials ,
20, 1221, 1999.
Search WWH ::




Custom Search