Biomedical Engineering Reference
In-Depth Information
263. Ramanaviˇius, A., Electrochemical study of permeability and charge-transfer in polypyrrole i lms,
Biologija , 2, 64, 2000.
264. Geise, R.J. et al., Electropolymerized fi lms to prevent interferences and electrode fouling in biosensors,
Biosens. Bioelectron. , 6, 151, 1991.
265. Guerrieri, A. et al., Electrosynthesized non-conducting polymers as permselective membranes in
amperometric enzyme electrodes: a glucose biosensor based on a co-crosslinked glucose oxidase/over-
oxidized polypyrrole bilayer, Biosens. Bioelectron ., 13, 103, 1998.
266. Vidal, J.C. et al., In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an
overoxidized polypyrrole fi lm electrodeposited in a fl ow system; determination of total cholesterol in
serum, Anal. Chim. Acta , 385, 213, 1999.
267. Vidal, J.C. et al., In situ preparation of overoxidized PPy/oPPD bilayer biosensors for the determination
of glucose and cholesterol in serum, Sensor. Actuator ., 57, 219, 1999.
268. Daniel, M.C. and Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-
related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev ., 104,
293, 2004.
269. Alvarez, M.M. et al., Optical absorption spectra of nanocrystal gold molecules, J. Phys. Chem . B , 101,
3706, 1997.
270. Chen, S. and Murray, R.W., Electrochemical quantized capacitance charging of surface ensembles of
gold nanoparticles, J. Phys. Chem . B ,103, 9996, 1999.
271. Hicks, J.F. et al., Dynamics of electron transfers between electrodes and monolayers of nanoparticles,
J. Phys. Chem. B , 106, 7751, 2006.
272. Sun, Y. et al., Memory effects in an interacting magnetic nanoparticle system, Phys. Rev. Lett ., 91,
167206, 2003.
273. Mornet, S. et al., Magnetic nanoparticle design for medical applications, Prog. Solid State Chem. , 34,
237, 2006.
274. On, D.T. et al., Perspective in catalytic applications of mesostructured materials, Appl. Catal . A , 222,
299, 2001.
275. Zhao, J. et al., Direct electron transfer at horseradish peroxidase—colloidal gold modifi ed electrodes,
J. Electroanal. Chem. , 327, 109, 1992.
276. Wang, J., Liu, G., and Merkoci, A., Electrochemical coding technology for simultaneous detection of
multiple DNA targets, J. Am. Chem. Soc ., 125, 3214, 2003.
277. Xiao, Y. et al., ''Plugging into enzymes'': nanowiring of redox enzymes by a gold nanoparticle, Science ,
299, 1877, 2003.
278. Katz, E. and Willner, I., Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and
applications, Angew. Chem. Int. Ed. , 43, 6042, 2004.
279. Demoustier-Champagne, S. and Delvaux, M., Preparation of polymeric and metallic nanostructures
using a template-based deposition method, Mater. Sci. Eng. C , 15, 269, 2001.
280. Delvaux, M. and Demoustier-Champagne, S., Immobilisation of glucose oxidase within metallic nano-
tubes arrays for application to enzyme biosensors, Biosens. Bioelectron. , 18, 943, 2003.
281. Delvaux, M., Walcarius, A., and Demoustier-Champagne, S., Electrocatalytic H 2 O 2 amperometric
detection using gold nanotube electrode ensembles, Anal. Chim. Acta , 525 , 221, 2004.
282. Yang, M., Chung, F.L., and Thompson, M., Acoustic network analysis as a novel technique for studying
protein adsorption and denaturation at surfaces, Anal. Chem ., 65, 3713, 1993.
283. Jackson, D.R., Omanovic, S., and Roscoe, S.G., Electrochemical studies of the adsorption behavior of
serum proteins on titanium, Langmuir , 16, 5449, 2000.
284. Xu, C.X. et al., Ultraviolet amplifi ed spontaneous emission from self-organized network of zinc oxide
nanofi bers, Appl. Phys. Lett. , 86, 011118, 2005.
285. Roy, V.A.L. et al., Luminescent and structural properties of ZnO nanorods prepared under different
conditions, Appl. Phys. Lett ., 83, 141, 2003.
286. Topoglidis, E. et al., Immobilisation and bioelectrochemistry of proteins on nanoporous TiO 2 and ZnO
fi lms, J. Electroanal. Chem. , 517, 20, 2001.
287. Zhang, F.F. et al., Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor,
Anal. Chim. Acta , 519, 155, 2004.
288. Yao, B.D., Chan, Y.F., and Wang, N., Formation of ZnO nanostructures by a simple way of thermal
evaporation, Appl. Phys. Lett. , 81, 757, 2001.
289. Wei, A. et al., Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal
decomposition, Appl. Phys. Lett ., 89, 123902, 2006.
Search WWH ::




Custom Search