Biomedical Engineering Reference
In-Depth Information
19. Requicha, A., Nanorobots, NEMS, and nanoassembly, Proc. IEEE , 91, 1922, 2003.
20. Martin, C.R., Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res .,
28, 61, 1995.
21. Berdichevsky, Y. and Lo, Y.H., Fabrication of polypyrrole nanowires, Proc. SPIE , 5759, 268, 2005.
22. Berdichevsky, Y. and Lo, Y.H., Fabrication and evaluation of conducting polymer nanowire hetero-
structures, Mat. Res. Soc. Symp. Proc ., 872, J13.4.1, 2005.
23. Berdichevsky, Y. and Lo, Y.H., Polypyrrole nanowire actuators, Adv. Mater. , 18, 122-125, 2006.
24. Naoi, K. et al., Electrochemistry of surfactant-doped polypyrrole fi lm(I)—formation of columnar
structure by electropolymerization, J. Electrochem. Soc. , 142, 417, 1995.
25. Wernet, W., Monkenbusch, M., and Wegner, G., A new series of conducting polymers with layered
structure: polypyrrole n-alkylsulfates and n-alkylsulfonates, Makromol. Chem. Rapid Commun ., 5,
157-164, 1984.
26. Song, M.K. et al., Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesul-
fonic acids, Synthetic Met ., 141, 315, 2004.
27. West, K. et al., Electronic conductivity of polypyrrole-dodecyl benzene sulfonate complexes, J. Phys.
Chem. B , 108, 15001, 2004.
28. Daum, P. et al., Diffusional charge transport through ultrathin fi lms of radiofrequency plasma
polymerized vinylferrocene at low temperature, J. Am. Chem. Soc ., 102, 4649, 1980.
29. Crank, J., The Mathematics of Diffusion , Clarendon Press, Oxford, UK, 1975.
30. Oglesby, D.M., Omang, S.H., and Reilley, C.N., Thin layer electrochemical studies using controlled
potential or controlled current, Anal. Chem ., 37, 1312, 1965.
31. Ariza, M.J. and Otero, T.F., Ionic diffusion across oxidized polypyrrole membranes and during oxida-
tion of the free-standing fi lm, Colloid. Surface. A , 270-271, 226-231, 2005.
32. Gerard, M., Chaubey, A., and Malhotra, B.D., Application of conducting polymers to biosensors,
Biosens. Bioelectron ., 17, 345, 2002.
33. Santhanam, K.S.V., Conducting polymers for biosensors: rationale based on models, Pure Appl. Chem .,
70, 1259, 1998.
34. Bartlett, P.N. and Birkin, P.R., The application of conducting polymers in biosensors, Synthetic Met .,
61, 15, 1993.
35. Genies, E.M. and Marchesiello, M., Conducting polymers for biosensors, application to new glucose
sensors, Synthetic Met ., 55-57, 3677, 1993.
36. Koopal, C.G.J., Eusma, B., and Nolte, R.J.M., Chronoamperometric detection of glucose by a third
generation biosensor constructed from conducting microtubules of polypyrrole, Synthetic Met ., 55-57,
3689, 1993.
37. Kros, A., Nolte, R.J.M., and Sommerdijk, N.A.J.M., Conducting polymers with confi ned dimensions:
track-etch membranes for amperometric biosensor applications, Adv. Mater ., 14, 1779, 2002.
38. Bidan, G. et al., Conducting polymers as a link between biomolecules and microelectronics, Synthetic
Met ., 102, 1363, 1999.
39. Wong, J.Y., Langer, R., and Ingber, D.E., Electrically conducting polymers can noninvasively control
the shape and growth of mammalian cells, Proc. Natl Acad. Sci. USA , 91, 3201, 1994.
40. Williams, R.L. and Doherty, P.J., A preliminary assessment of poly(pyrrole) in nerve guide studies,
J. Mater. Sci. Mater. Med ., 5, 429, 1994.
41. Schmidt, C.E. et al., Stimulation of neurite outgrowth using an electrically conducting polymer, Proc.
Natl Acad. Sci. USA , 94, 8948, 1997.
42. George, P.M. et al., Fabrication and biocompatibility of polypyrrole implants suitable for neural
prosthetics, Biomaterials , 26, 3511, 2005.
43. Cui, X. et al., Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS
on multichannel neural probes, Sensor Actuat. A , 93, 8, 2001.
44. Kawagoe, K.T., Zimmerman, J.B., and Wightman, R.M., Principles of voltammetry and microelectrode
surface states, J. Neurosci. Meth ., 48, 225, 1993.
45. Stamford, J.A. and Justice, J.B, Probing brain chemistry, Anal. Chem. , 68, A359, 1996.
46. Zhang, X. et al., Over-oxidized polypyrrole-modifi ed carbon fi bre ultramicroelectrode with an inte-
grated silver/silver chloride reference electrode for the selective voltammetric measurement of dopa-
mine in extremely small sample volumes, Analyst , 121, 1817, 1996.
47. Robinson, D.L. et al., Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo ,
Clin. Chem. , 49(10), 1763, 2003.
48. Fleischmann, M. et al., Eds., Ultramicroelectrodes , Datatech Systems, Morgantown, NC, 1987.
Search WWH ::




Custom Search