Biomedical Engineering Reference
In-Depth Information
25
20
15
10
5
0
5
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
Voltage (V)
FIGURE 13.31 Differential pulse stripping voltammetry of 2.5 nM dopamine in PBS solution. The current
is shown with the background digitally subtracted, and the dopamine peak is clearly visible.
REFERENCES
1. Immerstrand, C. et al., Conjugated-polymer micro- and milliactuators for biological applications, MRS
Bull ., 27(6), 461, 2002.
2. Smela, E. and Gadegaard, N., Volume change in polypyrrole studied by atomic force microscopy,
J. Phys. Chem. B , 105(39), 9395, 2001.
3. Berdichevsky, Y. and Lo, Y.H., Polymer microvalve based on anisotropic expansion of polypyrrole,
Mat. Res. Soc. Symp. Proc ., 782, A4.4.1, 2004.
4. Martin, C.R., Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res .,
28, 61, 1995.
5. Smela, E., Microfabrication of PPy microactuators and other conjugated polymer devices, J. Micro-
mech. Microeng ., 9, 1, 1999.
6. West, K. et al., Electronic conductivity of polypyrrole-dodecyl benzene sulfonate complexes, J. Phys.
Chem. B , 108, 15001, 2004.
7. Bay, L. et al., Mechanism of actuation in conducing polymers: osmotic expansion, J. Phys. Chem. B ,
105, 8492, 2001.
8. Otero, T.F., Grande, H.J., and Rodriguez, J., Reinterpretation of polypyrrole electrochemistry after
consideration of conformational relaxation processes, J. Phys. Chem. B , 101, 3688, 1997.
9. Ren, X. and Pickup, P.G., Ion transport in polypyrrole and a polypyrrole/polyanion composite, J. Phys.
Chem ., 97, 5356, 1993.
10. Cui, X. and Martin, D.C., Fuzzy gold electrodes for lowering impedance and improving adhesion
with electrodeposited conducting polymer fi lms, Sensor Actuat. A , 103, 384, 2003.
11. Pyo, M. et al., Direct strain measurement of polypyrrole actuators controlled by the polymer/gold
interface, Chem. Mater ., 15, 916, 2003.
12. Jager, E.W.H., Smela, E., and Inganas, O., Microfabricating conjugated polymer actuators, Science ,
290, 1540, 2000; Jager, E.W.H., Inganas, O., and Lundstrom, I., Microrobots for micrometer-size objects
in aqueous media: potential tools for single-cell manipulation, Science , 288, 2335, 2000.
13. Madou, M.J., Fundamentals in Microfabrication , CRC Press, Boca Raton, FL, 1997.
14. Duffy, D. et al., Rapid prototyping of microfl uidic systems in poly(dimethylsiloxane), Anal. Chem ., 70,
4974, 1998.
15. Pettersson, P.F., Jager, E.W.H., and Inganas, O., Surface micromachined polymer actuators as valves
in PDMS microfl uidic system, in 1st IEEE-EMBS Special Topic Conference on Microtechnologies in
Medicine and Biology, 2000.
16. Smela, E. and Gadegaard, N., Surprising volume change in PPy(DBS): an atomic force microscopy
study, Adv. Mater ., 11(11), 953, 1999.
17. Fennimore, A.M. et al., Rotational actuators based on carbon nanotubes, Nature , 424, 408, 2003.
18. Craighead, H.G., Nanoelectromechanical systems, Science , 290, 1532, 2000.
 
 
Search WWH ::




Custom Search