Biology Reference
In-Depth Information
80. Jaladat Y, Zhang B, Mohammadi A, Valadkhan S. Splicing of an intervening sequence
by protein-free human snRNAs. RNA Biol . 2011;8(3). Available at: http://www.ncbi.
nlm.nih.gov/pubmed/21445000 , Accessed 18.08.2011.
81. Lee C, Jaladat Y, Mohammadi A, et al. Metal binding and substrate positioning by evo-
lutionarily invariant U6 sequences in catalytically active protein-free snRNAs. RNA .
2010;16(11):2226-2238.
82. Podar M, Chu VT, Pyle AM, Perlman PS. Group II intron splicing in vivo by first-step
hydrolysis. Nature . 1998;391(6670):915-918.
83. Hsieh J, Andrews AJ, Fierke CA. Roles of protein subunits in RNA-protein com-
plexes: lessons from ribonuclease P. Biopolymers . 2004;73(1):79-89.
84. Emilsson GM, Nakamura S, Roth A, Breaker RR. Ribozyme speed limits. RNA .
2003;9(8):907-918.
85. Valadkhan S, Jaladat Y. The spliceosomal proteome: at the heart of the largest cellular
ribonucleoprotein machine. Proteomics . 2010;10(22):4128-4141.
86. Grainger RJ, Beggs JD. Prp8 protein: at the heart of the spliceosome. RNA . 2005;11
(5):533-557.
87. Lai LB, Vioque A, Kirsebom LA, Gopalan V. Unexpected diversity of RNase P, an
ancient tRNA processing enzyme: challenges and prospects. FEBS Lett . 2010;584
(2):287-296.
88. Lilley DMJ. Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol .
2005;15(3):313-323.
89. Strobel SA, Cochrane JC. RNA catalysis: ribozymes, ribosomes, and riboswitches. Curr
Opin Chem Biol . 2007;11(6):636-643.
90. Turner IA, Norman CM, Churcher MJ, Newman AJ. Dissection of Prp8 protein
defines multiple interactions with crucial RNA sequences in the catalytic core of the
spliceosome. RNA . 2006;12(3):375-386.
91. Liu S, Rauhut R, Vornlocher H-P, L¨hrmann R. The network of protein-protein
interactions within the human U4/U6.U5 tri-snRNP. RNA . 2006;12(7):1418-1430.
92. Boon K-L, Norman CM, Grainger RJ, Newman AJ, Beggs JD. Prp8p dissection
reveals domain structure and protein interaction sites. RNA . 2006;12(2):198-205.
93. Kuhn AN, Reichl EM, Brow DA. Distinct domains of splicing factor Prp8 mediate
different aspects of
spliceosome activation. Proc Natl Acad Sci USA . 2002;99
(14):9145-9149.
94. Kuhn AN, BrowDA. Suppressors of a cold-sensitive mutation in yeast U4 RNA define
five domains in the splicing factor Prp8 that influence spliceosome activation. Genetics .
2000;155(4):1667-1682.
95. Liu L, Query CC, Konarska MM. Opposing classes of prp8 alleles modulate the tran-
sition between the catalytic steps of pre-mRNA splicing. Nat Struct Mol Biol . 2007;
14(6):519-526.
96. Query CC, Konarska MM. Splicing fidelity revisited. Nat Struct Mol Biol . 2006;
13(6):472-474.
97. Query CC, Konarska MM. Suppression of multiple substrate mutations by
spliceosomal prp8 alleles suggests functional correlations with ribosomal ambiguity
mutants. Mol Cell . 2004;14(3):343-354.
98. Valadkhan S. The spliceosome: caught in a web of shifting interactions. Curr Opin Struct
Biol . 2007;17(3):310-315.
99. Pena V, Liu S, Bujnicki JM, L ¨ hrmann R, Wahl MC. Structure of a multipartite
protein-protein interaction domain in splicing factor prp8 and its link to retinitis
pigmentosa. Mol Cell . 2007;25(4):615-624.
100. Zhang L, Shen J, Guarnieri MT, et al. Crystal structure of the C-terminal domain of
splicing factor Prp8 carrying retinitis pigmentosa mutants. Protein Sci . 2007;16(6):
1024-1031.
 
Search WWH ::




Custom Search