Biology Reference
In-Depth Information
57. Madhani HD, Guthrie C. Randomization-selection analysis of snRNAs in vivo : evi-
dence for a tertiary interaction in the spliceosome. Genes Dev . 1994;8(9):1071-1086.
58. Smith DJ, Query CC, Konarska MM. “Nought may endure but mutability”:
spliceosome dynamics and the regulation of
splicing. Mol Cell . 2008;30(6):
657-666.
59. Perriman RJ, Ares M. Rearrangement of competing U2 RNA helices within the
spliceosome promotes multiple steps in splicing. Genes Dev . 2007;21(7):811-820.
60. Hilliker AK, Mefford MA, Staley JP. U2 toggles iteratively between the stem IIa and
stem IIc conformations
to promote pre-mRNA splicing. Genes Dev . 2007;21
(7):821-834.
61. Luukkonen BG, S´raphin B. Genetic interaction between U6 snRNA and the first
intron nucleotide in Saccharomyces cerevisiae . RNA . 1998;4(2):167-180.
62. Chanfreau G, Jacquier A. An RNA conformational change between the two chemical
steps of group II self-splicing. EMBO J . 1996;15(13):3466-3476.
63. De Lencastre A, Hamill S, Pyle AM. A single active-site region for a group II intron.
Nat Struct Mol Biol . 2005;12(7):626-627.
64. KimCH, Abelson J. Site-specific crosslinks of yeast U6 snRNA to the pre-mRNA near
the 5 0 splice site. RNA . 1996;2(10):995-1010.
65. Valadkhan S, Manley JL. Intrinsic metal binding by a spliceosomal RNA. Nat Struct
Biol . 2002;9(7):498-499.
66. Konforti BB, Abramovitz DL, Duarte CM, et al. Ribozyme catalysis from the major
groove of group II intron domain 5. Mol Cell . 1998;1(3):433-441.
67. Valadkhan S, Manley JL. A tertiary interaction detected in a human U2-U6 snRNA
complex assembled in vitro resembles a genetically proven interaction in yeast. RNA .
2000;6(2):206-219.
68. Guo Z, Karunatilaka KS, Rueda D. Single-molecule analysis of protein-free U2-U6
snRNAs. Nat Struct Mol Biol . 2009;16(11):1154-1159.
69. Sashital DG, Cornilescu G, McManus CJ, Brow DA, Butcher SE. U2-U6 RNA fold-
ing reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol .
2004;11(12):1237-1242.
70. Butcher SE, Brow DA. Towards understanding the catalytic core structure of the
spliceosome. Biochem Soc Trans . 2005;33(Pt 3):447-449.
71. Butcher SE. The spliceosome and its metal ions. Met Ions Life Sci . 2011;9:235-251.
72. Maschhoff KL, Padgett RA. The stereochemical course of the first step of pre-mRNA
splicing. Nucleic Acids Res . 1993;21(23):5456-5462.
73. Maschhoff KL, Padgett RA. Phosphorothioate substitution identifies phosphate groups
important for pre-mRNA splicing. Nucleic Acids Res . 1992;20(8):1949-1957.
74. Steitz TA, Steitz JA. A general two-metal-ion mechanism for catalytic RNA. Proc Natl
Acad Sci USA . 1993;90(14):6498-6502.
75. Lilley DMJ. Mechanisms of RNA catalysis. Philos Trans R Soc Lond B Biol Sci . 2011;366
(1580):2910-2917.
76. Valadkhan S, Manley JL. Splicing-related catalysis by protein-free snRNAs. Nature .
2001;413(6857):701-707.
77. Valadkhan S, Manley JL. Characterization of the catalytic activity of U2 and U6
snRNAs. RNA . 2003;9(7):892-904.
78. Valadkhan S, Mohammadi A, Wachtel C, Manley JL. Protein-free spliceosomal
snRNAs catalyze a reaction that resembles the first step of splicing. RNA . 2007;
13(12):2300-2311.
79. Valadkhan S, Mohammadi A, Jaladat Y, Geisler S. Protein-free small nuclear RNAs
catalyze a two-step splicing reaction. Proc Natl Acad Sci USA . 2009;106(29):
11901-11906.
 
 
Search WWH ::




Custom Search