Biology Reference
In-Depth Information
37. Hetzer M, Wurzer G, Schweyen RJ, Mueller MW. Trans-activation of group II intron
splicing by nuclear U5 snRNA. Nature . 1997;386(6623):417-420.
38. O'Keefe RT, Norman C, Newman AJ. The invariant U5 snRNA loop 1 sequence is
dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell . 1996;86
(4):679-689.
39. S´gault V, Will CL, Polycarpou-Schwarz M, et al. Conserved loop I of U5 small
nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa
nuclear extracts. Mol Cell Biol . 1999;19(4):2782-2790.
40. Smith DJ, Query CC, Konarska MM. trans-splicing to spliceosomal U2 snRNA sug-
gests disruption of branch site-U2 pairing during pre-mRNA splicing. Mol Cell .
2007;26(6):883-890.
41. Wachtel C, Manley JL. Splicing of mRNA precursors: the role of RNAs and proteins in
catalysis. Mol Biosyst . 2009;5(4):311-316.
42. Fabrizio P, Abelson J. Two domains of yeast U6 small nuclear RNA required for both
steps of nuclear precursor messenger RNA splicing. Science . 1990;250(4979):404-409.
43. Madhani HD, Bordonn´ R, Guthrie C. Multiple roles for U6 snRNA in the splicing
pathway. Genes Dev . 1990;4(12B):2264-2277.
44. Madhani HD, Guthrie C. A novel base-pairing interaction between U2 and U6
snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell .
1992;71(5):803-817.
45. Datta B, Weiner AM. The phylogenetically invariant ACAGAGA and AGC sequences
of U6 small nuclear RNA are more tolerant of mutation in human cells than in Saccha-
romyces cerevisiae . Mol Cell Biol . 1993;13(9):5377-5382.
46. Wolff T, Menssen R, Hammel J, Bindereif A. Splicing function of mammalian U6
small nuclear RNA: conserved positions in central domain and helix I are essential dur-
ing the first and second step of pre-mRNA splicing. Proc Natl Acad Sci USA . 1994;91
(3):903-907.
47. McPheeters DS. Interactions of the yeast U6 RNA with the pre-mRNA branch site.
RNA . 1996;2(11):1110-1123.
48. Sontheimer EJ, Steitz JA. The U5 and U6 small nuclear RNAs as active site compo-
nents of the spliceosome. Science . 1993;262(5142):1989-1996.
49. Konarska MM, Vilardell J, Query CC. Repositioning of the reaction intermediate
within the catalytic center of the spliceosome. Mol Cell . 2006;21(4):543-553.
50. Tseng C-K, Cheng S-C. Both catalytic steps of nuclear pre-mRNA splicing are revers-
ible. Science . 2008;320(5884):1782-1784.
51. Yu YT, Maroney PA, Nilsen TW. Functional reconstitution of U6 snRNA in nem-
atode cis- and trans-splicing: U6 can serve as both a branch acceptor and a 5 0 exon. Cell .
1993;75(6):1049-1059.
52. Smith DJ, Konarska MM, Query CC. Insights into branch nucleophile positioning and
activation from an orthogonal pre-mRNA splicing system in yeast. Mol Cell . 2009;34
(3):333-343.
53. Sun JS, Manley JL. A novel U2-U6 snRNA structure is necessary for mammalian
mRNA splicing. Genes Dev . 1995;9(7):843-854.
54. Hilliker AK, Staley JP. Multiple functions for the invariant AGC triad of U6 snRNA.
RNA . 2004;10(6):921-928.
55. Mefford MA, Staley JP. Evidence that U2/U6 helix I promotes both catalytic steps of
pre-mRNA splicing and rearranges
in between these steps. RNA . 2009;15
(7):1386-1397.
56. Rhode BM, Hartmuth K, Westhof E, L¨hrmann R. Proximity of conserved U6 and
U2 snRNA elements to the 5 0 splice site region in activated spliceosomes. EMBO J .
2006;25(11):2475-2486.
 
Search WWH ::




Custom Search