Digital Signal Processing Reference
In-Depth Information
Another research direction should contemplate hardware development. From the
results shown in Sect. 2 it is clear that heterogeneous SoCs, capable of exploring
parallelism at the thread and also at the instruction level, are the most adequate to
obtain real performance and energy gains. Unfortunately, in an era where fabrication
costs demand huge volumes, the big question to be answered regards the right
amount of heterogeneity to be embedded in the MPSoC fabric.
References
1. Anantaraman, A., Seth, K., Patil, K., Rotenberg, E., Mueller, F.: Virtual simple architecture
(VISA): Exceeding the complexity limit in safe real-time systems. In: Proc. 30th Annual Int.
Symposium Computer Architecture, pp. 350-361. San Diego, CA (2003)
2. Bergamaschi, R., Han, G., Buyuktosunoglu, A., Patel, H., Nair, I., Dittmann, G., Janssen, G.,
Dhanwada, N., Hu, Z., Bose, P., Darringer, J.: Exploring power management in multi-core
systems. In: Proc. Asia and South Pacific Design Automation Conf. Seoul, Korea (2008)
3. Chen, T., Raghavan, R., Dale, J.N., Iwata, E.: Cell broadband engine architecture and its first
implementation: A performance view. IBM J. Res. Dev. 51 (5), 559-572 (2007)
4. Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory program-
ming. IEEE Comput. Sci. Eng. 5 (1), 46-55 (1998)
5. Du, J.: Inside an 80-corechip: The on-chip communication and memory bandwidth solutions
(2007). URL http://blogs.intel.com/research/2007/07/inside the terascale many core.php
6. Freescale, Inc. URL http://www.freescale.com/webapp/sps/site/ homepage.jsp
7. Guo, J., Papanikolaou, A., Marchal, P., Catthoor, F.: Physical design implementation of
segmented buses to reduce communication energy. In: Proc. Asia and South Pacific Design
Automation Conference, pp. 42-47. Yokohama, Japan (2006)
8. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench:
A free, commercially representative embedded benchmark suite. In: Proc. IEEE Int. Workshop
Workload Characterization, pp. 3-14. Austin, TX (2001)
9. Intel core i7 processor SDK webinar: Q and A transcript from the 8:00 a.m. PST. URL http://
software.intel.com/sites/webinar/corei7-sdk/intel-core-i7-8am.doc
10. Johnson, T., Nawathe, U.: An 8-core, 64-thread, 64-bit power efficient Sparc SoC (Niagara2).
In: Proc. Int. Symposium Physical Design, p. 2. Austin, TX (2007)
11. Kongetira, P., Aingaran, K., Olukotun, K.: Niagara: A 32-way multithreaded Sparc processor.
IEEE Micro 25(2), 21-29 (2005)
12. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A unified graphics and
computing architecture. IEEE Micro 28(2), 39-55 (2008)
13. Marcon, C., Borin, A., Susin, A., Carro, L., Wagner, F.: Time and energy efficient mapping
of embedded applications onto NoCs. In: Proc. Asia and South Pacific-Design Automation
Conference (2005)
14. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann Publishers, Inc. (1996)
15. Reifel, M., Chen, D.: Parallel digital signal processing: An emerging market. Application Note
(1994). URL http://focus.ti.com/lit/an/spra104/spra104.pdf
16. Rutzig, M.B., Beck, A.C., Carro, L.: Dynamically adapted low power ASIPs. In: Reconfig-
urable Computing: Architectures, Tools and Applications, Lecture Notes In Computer Science,
vol. 5453, pp. 110-122. Springer-Verlag, Berlin, Germany (2009)
17. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A.,
Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P.: Larrabee: A many-
core x86 architecture for visual computing. In: ACM SIGGRAPH 2008 Papers, pp. 1-15. Los
Angeles, CA (2008)
18. Shi, K., Howard, D.: Challenges in sleep transistor design and implementation in low-power
designs. In: Proc. 43rd Annual Conf. Design Automation, pp. 113-116 (2006)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Search WWH ::




Custom Search