Geology Reference
In-Depth Information
Taking the divergence,
2 C
·
R
2 C
R
R 3 .
·
=−
(1.309)
R
Then, taking the constant vector to be
F 0
8π(λ +
2μ) ,
(1.310)
we see that
1
8π(λ +
F 0 ·
R
L
=
(1.311)
2μ)
R
is a particular solution of (1.286) for the scalar displacement potential. For gauge
∇· A =
0, equation (1.287) gives, for the i th component of the vector displacement
potential,
ξ ijk F 0 j ( x k ξ k )
R 3
1
2 A i
μ
=−
( A F ) i =−
,
(1.312)
using expression (1.305) for A F . Next, taking the constant vector C to be the
vectors ( e 3 F 02 e 2 F 03 ), ( e 1 F 03 e 3 F 01 )and( e 2 F 01 e 1 F 02 ), in turn, we find that
2 ( e 3 F 02
e 2 F 03 )
·
R
2 ( e 3 F 02
e 2 F 03 )
·
R
=−
,
R 3
R
2 ( e 1 F 03
e 3 F 01 )
·
R
2 ( e 1 F 03
e 3 F 01 )
·
R
=−
,
(1.313)
R
R 3
2 ( e 2 F 01
e 1 F 02 )
· R
2 ( e 2 F 01
e 1 F 02 )
· R
=−
,
R
R 3
with ( e 1 , e 2 , e 3 ) representing the Cartesian unit vectors. Combining these results,
we obtain
2 F 0 ×
R
2 F 0 ×
R
R 3 .
=−
(1.314)
R
We are then led to
1
8πμ
F 0
×
R
A
=
(1.315)
R
as a particular solution of (1.287). Since
F 0
×
R
( F 0
×
R )
·
R
∇·
=−
=
0,
(1.316)
R
R 3
the assumed gauge,
∇·
A
=
0, is verified.
Search WWH ::




Custom Search