Geology Reference
In-Depth Information
The vector displacement field is found from (1.272) using expressions (1.311)
and (1.315) for L and A , respectively. The vector identities,
F 0 ·
R
F 0
R
( F 0 ·
R )
=
R ,
(1.317)
R
R 3
and
F 0
×
R
F 0
R +
( F 0
·
R )
∇×
=
R ,
(1.318)
R
R 3
allow simplification of the final expression for u to
8πμ(λ +
λ +
F 0
R +
λ + μ
8πμ(λ +
( F 0 ·
R )
u
=
R .
(1.319)
2μ)
2μ)
R 3
This result, for the displacement field arising from a concentrated point force in
an infinite, uniform medium, was first obtained by Lord Kelvin in 1848, and is
generally known as the solution to Kelvin's problem .
With the constant
λ + μ
8πμ(λ +
H
=
2μ) ,
(1.320)
the associated normal stresses are
R 3 3 ( x 1
R
2 F 01 ( x 1 ξ 1 )
ξ 1 ) 2 F 0
H
·
R
μ
λ + μ
τ 11 =−
+
F 0 ·
,
R 2
R 3 3 ( x 2
R
2 F 02 ( x 2 ξ 2 )
ξ 2 ) 2 F 0
H
·
R
μ
λ + μ
τ 22 =−
+
F 0 ·
, (1.321)
R 2
R 3 3 ( x 3
R
2 F 03 ( x 3 ξ 3 )
ξ 3 ) 2 F 0
H
·
R
μ
λ + μ
τ 33 =−
+
F 0 ·
,
R 2
and the associated shear stresses are
R 3 3 ( x 1
H
ξ 1 )( x 3
ξ 3 ) F 0
·
R
τ 13 =−
R 2
ξ 1 )
F 01 ( x 3
μ
λ + μ
+
ξ 3 )
+
F 03 ( x 1
,
R 3 3 ( x 2
H
ξ 2 )( x 3
ξ 3 ) F 0
·
R
τ 23
=−
R 2
ξ 2 )
F 02 ( x 3
μ
λ + μ
+
ξ 3 )
+
F 03 ( x 2
,
(1.322)
R 3 3 ( x 1
ξ 1 )( x 2
ξ 2 ) F 0
·
R
H
τ 12
=−
R 2
F 02 ( x 1 ξ 1 )
F 01 ( x 2 ξ 2 )
μ
λ + μ
+
+
.
 
Search WWH ::




Custom Search