Biology Reference
In-Depth Information
Ruthenburg, A. J., Li, H., Patel, D. J., & Allis, C. D. (2007). Multivalent engagement of
chromatin modifications by linked binding modules. Nature Reviews. Molecular Cell Biol-
ogy , 8 , 983-994.
Ruzov, A., Dunican, D. S., Prokhortchouk, A., Pennings, S., Stancheva, I.,
Prokhortchouk, E., et al. (2004). Kaiso is a genome-wide repressor of transcription that
is essential for amphibian development. Development , 131 , 6185-6194.
Ruzov, A., Savitskaya, E., Hackett, J. A., Reddington, J. P., Prokhortchouk, A.,
Madej, M. J., et al. (2009). The non-methylated DNA-binding function of Kaiso is
not required in early Xenopus laevis development. Development , 136 , 729-738.
Schuettengruber, B., Ganapathi, M., Leblanc, B., Portoso, M., Jaschek, R., Tolhuis, B., et al.
(2009). Functional anatomy of polycomb and trithorax chromatin landscapes
in
Drosophila embryos. PLoS Biology , 7 , e13.
Smallwood, S. A., Tomizawa, S., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., et al.
(2011). Dynamic CpG island methylation landscape in oocytes and preimplantation
embryos. Nature Genetics , 43 , 811-814.
Smith, Z. D., Chan, M. M., Mikkelsen, T. S., Gu, H., Gnirke, A., Regev, A., et al. (2012).
A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature ,
484 , 339-344.
Sørensen, A. L., Jacobsen, B. M., Reiner, A. H., Andersen, I. S., & Collas, P. (2010). Pro-
moter DNA methylation patterns of differentiated cells are largely programmed at the
progenitor stage. Molecular Biology of the Cell , 21 , 2066-2077.
Sørensen, A. L., Timoskainen, S., West, F. D., Vekterud, K., Boquest, A. C., ¨ hrlund-
Richter, L., et al. (2009). Lineage-specific promoter DNA methylation patterns segre-
gate adult progenitor cell types. Stem Cells and Development , 19 , 1257-1266.
Stancheva, I., El-Maarri, O., Walter, J., Niveleau, A., &Meehan, R. R. (2002). DNA meth-
ylation at promoter regions regulates the timing of gene activation in Xenopus laevis
embryos. Developmental Biology , 243 , 155-165.
Stancheva, I., & Meehan, R. R. (2000). Transient depletion of xDnmt1 leads to premature
gene activation in Xenopus embryos. Genes & Development , 14 , 313-327.
Tadros, W., & Lipshitz, H. D. (2009). The maternal-to-zygotic transition: A play in two acts.
Development , 136 , 3033-3042.
ten Bosch, J. R., Benavides, J. A., & Cline, T. W. (2006). The TAGteam DNA motif con-
trols the timing of Drosophila pre-blastoderm transcription. Development , 133 ,
1967-1977.
Thomson, J. P., Skene, P. J., Selfridge, J., Clouaire, T., Guy, J., Webb, S., et al. (2010). CpG
islands influence chromatin structure via the CpG-binding protein Cfp1. Nature , 464 ,
1082-1086.
Toyama, R., Rebbert, M. L., Dey, A., Ozato, K., &Dawid, I. B. (2008). Brd4 associates with
mitotic chromosomes throughout early zebrafish embryogenesis. Developmental Dynam-
ics , 237 , 1636-1644.
Tsurumi, A., Xia, F., Li, J., Larson, K., LaFrance, R., & Li, W. X. (2011). STAT is an essen-
tial activator of the zygotic genome in the early Drosophila embryo. PLoS Genetics , 7 ,
e1002086.
Vastenhouw, N. L., & Schier, A. F. (2012). Bivalent histone modifications in early embryo-
genesis. Current Opinion in Cell Biology , 24 , 374-386.
Vastenhouw, N. L., Zhang, Y., Woods, I. G., Imam, F., Regev, A., Liu, X. S., et al. (2010).
Chromatin signature of embryonic pluripotency is established during genome activation.
Nature , 464 , 922-926.
Veenstra, G. J., &Wolffe, A. P. (2001). Constitutive genomic methylation during embryonic
development of Xenopus. Biochimica et Biophysica Acta , 1521 , 39-44.
Vesterlund, L., Jiao, H., Unneberg, P., Hovatta, O., & Kere, J. (2011). The zebrafish trans-
criptome during early development. BMC Developmental Biology , 11 , 30.
Search WWH ::




Custom Search