Civil Engineering Reference
In-Depth Information
ε 2
ζε o =
¯
0
.
00300
Equation 13 b
0024) =
11
.
63
>
1 descending branch
0
.
1075(
0
.
1
2
ε 2 /ζ ε o )
1
2
f c
σ
= ζ
(4
)
1
1
2
11
.
63
1
=
0
.
1075 (
48
.
1)
(4
/
0
.
1075)
1
=
0
.
1075 (
48
.
1) (0
.
9138)
=−
4
.
725 MPa
Equation 16 b
ε 1 =
¯
0
.
21716
cr =
0
.
00008 descending branch
31 f c ( MPa )
31 48
f cr =
.
=
.
.
=
.
0
0
1
2
150 MPa
f cr ε cr
¯
0 . 4
150 0
0 . 4
.
00008
σ
1
=
=
.
=
.
2
0
2285 MPa
ε 1
0
.
021716
c
c
2
σ
1 σ
0
.
2285
+
4
.
725
c
Equation 17
τ
12 =
ε 1 ε 2 ) γ 12 =
00300) (0
.
01672)
2(
2(0
.
027416
+
0
.
=
81
.
42(0
.
01672)
=
1
.
361 MPa
Calculate longitudinal steel stress f :
f cr
f y
1 . 5
2
1 . 5
.
1
ρ
1
150
425
=
=
=
.
Equation 18 e
B
0
0211
0
.
0170
.
4
f y =
Equation 18 d
(0
.
93
2 B ) f y =
(0
.
93
2
×
0
.
0211)(425
.
4)
=
377
.
7MPa
ε y =
f y /
E s =
377
.
7
/
212
,
700
=
0
.
00178
>
ε =
¯
0
.
000998
Notice that longitudinal steel did not yield.
Equation 18 a
f =
E s ¯
ε =
212 700 (0
.
000998)
=
212
.
3MPa
Calculate transverse steel stress f t :
f cr
f ty
1 . 5
2
1 . 5
1
ρ t
1
150
457
.
Equation 19 e
B
=
=
=
0
.
1693
0
.
0019
.
9
f y =
.
2 B ) f ty =
.
×
.
.
=
.
Equation 19 d
(0
93
(0
93
2
0
1693)(457
9)
270
8MPa
ε y =
f y /
E s =
270
.
8
/
184
,
600
=
0
.
00147
<
¯
ε t =
0
.
01772
Notice that the transverse steel reached into the strain-hardening range.
Equation 19 b
f t
=
(0
.
91
2 B ) f ty +
(0
.
02
+
0
.
25B) E s ¯
ε t
=
(0
.
91
2
×
0
.
1693) (457
.
9)
+
(0
.
02
+
0
.
25
×
0
.
1693) (184 600) (0
.
01772)
=
261
.
6
+
203
.
9
=
465
.
5MPa
.
Search WWH ::




Custom Search