Biology Reference
In-Depth Information
4. Dean JB, Nattie EE. Central CO2 chemoreception in cardio-respiratory control. J Appl
Physiol . 2010;108:976-978.
5. Baruscotti M, Barbuti A, Bucchi A. The cardiac pacemaker current. J Mol Cell Cardiol .
2010;48:55-64.
6. Feldman JL, Del Negro CA. Looking for inspiration: new perspectives on respiratory
rhythm. Nat Rev Neurosci . 2006;7:232-242.
7. Hilaire G, Monteau R, Gauthier P, Rega P, Morin D. Functional significance of the
dorsal respiratory group in adult and newborn rats: in vivo and in vitro studies. Neurosci
Lett . 1990;111:133-138.
8. Stornetta RL, Sevigny CP, Guyenet PG. Inspiratory augmenting bulbospinal neurons
express both glutamatergic and enkephalinergic phenotypes.
J Comp Neurol .
2003;455:113-124.
9. Shen L, Duffin J. Caudal
expiratory neurones
in the
rat.
Pflugers Arch .
2002;444:405-410.
10. Ezure K, Tanaka I, Saito Y. Brainstem and spinal projections of augmenting expiratory
neurons in the rat. Neurosci Res . 2003;45:41-51.
11. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Botzinger com-
plex: a brainstem region that may generate respiratory rhythm in mammals. Science .
1991;254:726-729.
12. Onimaru H, Homma I. A novel functional neuron group for respiratory rhythm gen-
eration in the ventral medulla. J Neurosci . 2003;23:1478-1486.
13. Onimaru H, Arata A, Homma I. Primary respiratory rhythm generator in the medulla
of brainstem-spinal cord preparation from newborn rat. Brain Res . 1988;445:314-324.
14. Guyenet PG, Mulkey DK. Retrotrapezoid nucleus and parafacial respiratory group.
Respir Physiol Neurobiol . 2010;173:244-255.
15. Huckstepp RT, Dale N. Redefining
the
components of
central CO2
chemosensitivity—towards
a better understanding of mechanism.
J Physiol .
2011;589:5561-5579.
16. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary
and lower airway vagal afferents. J Appl Physiol . 2006;101:618-627.
17. Buckler KJ, Vaughan-Jones RD. Effects of hypercapnia on membrane potential and
intracellular calcium in rat carotid body type I cells. J Physiol . 1994;478(Pt. 1):157-171.
18. Ramirez JM, Quellmalz UJ, Wilken B, Richter DW. The hypoxic response of neu-
rones within the in vitro mammalian respiratory network.
J Physiol . 1998;507
(Pt. 2):571-582.
19. Solomon IC, Edelman NH, Neubauer JA. Pre-Botzinger complex functions as a cen-
tral hypoxia chemosensor for respiration in vivo . J Neurophysiol . 2000;83:2854-2868.
20. Mazza EJ, Edelman NH, Neubauer JA. Hypoxic excitation in neurons cultured from
the rostral ventrolateral medulla of the neonatal rat. J Appl Physiol . 2000;88:2319-2329.
21. Dillon GH, Waldrop TG. In vitro responses of caudal hypothalamic neurons to hyp-
oxia and hypercapnia. Neuroscience . 1992;51:941-950.
22. Honda Y. Respiratory and circulatory activities in carotid body-resected humans.
J Appl Physiol . 1992;73:1-8.
23. Richerson GB, Wang W, Hodges MR, Dohle CI, Diez-Sampedro A. Homing in on
the specific phenotype(s) of central
respiratory chemoreceptors.
Exp Physiol .
2005;90:259-266.
24. Guyenet PG, Stornetta RL, Bayliss DA, Mulkey DK. Retrotrapezoid nucleus: a litmus
test for the identification of central chemoreceptors. Exp Physiol . 2005;90:247-253.
25. Nattie EE, Li A. Central chemoreception is a complex system function that involves
multiple brainstem sites. J Appl Physiol . 2009;106:1464-1466.
26. Corcoran AE, Hodges MR, Wu Y, et al. Medullary serotonin neurons and central
CO2 chemoreception. Respir Physiol Neurobiol . 2009;168:49-58.
 
 
 
 
 
 
 
Search WWH ::




Custom Search