Biology Reference
In-Depth Information
27. Richerson GB. Response to CO 2 of neurons in the rostral ventral medulla in vitro .
J Neurophysiol . 1995;73:933-944.
28. Richerson GB. Serotonergic neurons as carbon dioxide sensors that maintain pH
homeostasis. Nat Rev Neurosci . 2004;5:449-461.
29. Dean JB, Bayliss DA, Erickson JT, LawingWL, Millhorn DE. Depolarization and stim-
ulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chem-
ical synaptic input. Neuroscience . 1990;36:207-216.
30. Pineda J, Aghajanian GK. Carbon dioxide regulates the tonic activity of locus coeruleus
neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium
current. Neuroscience . 1997;77:723-743.
31. Oyamada Y, Ballantyne D, Muckenhoff K, Scheid P. Respiration-modulated mem-
brane potential and chemosensitivity of locus coeruleus neurones in the in vitro
brainstem-spinal cord of the neonatal rat. J Physiol . 1998;513(Pt. 2):381-398.
32. Dean JB, Kinkade EA, Putnam RW. Cell-cell coupling in CO(2)/H( þ )-excited neu-
rons in brainstem slices. Respir Physiol . 2001;129:83-100.
33. Nattie EE, Gdovin M, Li A. Retrotrapezoid nucleus glutamate receptors: control of
CO2-sensitive phrenic and sympathetic output. J Appl Physiol . 1993;74:2958-2968.
34. Li A, Nattie EE. Focal central chemoreceptor sensitivity in the RTN studied with a
CO2 diffusion pipette in vivo. J Appl Physiol . 1997;83:420-428.
35. Mulkey DK, Stornetta RL, Weston MC, et al. Respiratory control by ventral surface
chemoreceptor neurons in rats. Nat Neurosci . 2004;7:1360-1369.
36. Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D. Control of hypotha-
lamic orexin neurons by acid and CO2.
Proc Natl Acad Sci USA . 2007; 104:
10685-10690.
37. Li N, Li A, Nattie E. Focal microdialysis of CO(2) in the perifornical-hypothalamic area
increases ventilation during wakefulness but not NREM sleep. Respir Physiol Neurobiol .
2013;185:349-355.
38. Nattie E, Li A. Respiration and autonomic regulation and orexin. Prog Brain Res .
2012;198:25-46.
39. Dias MB, Li A, Nattie E. The orexin receptor 1 (OX1R) in the rostral medullary raphe
contributes to the hypercapnic chemoreflex in wakefulness, during the active period of
the diurnal cycle. Respir Physiol Neurobiol . 2010;170:96-102.
40. Martino PF, Davis S, Opansky C, et al. The cerebellar fastigial nucleus contributes to
CO2-H þ
ventilatory
sensitivity
in awake
goats.
Respir Physiol Neurobiol .
2007;157:242-251.
41. Mohan R, Duffin J. The effect of hypoxia on the ventilatory response to carbon dioxide
in man. Respir Physiol . 1997;108:101-115.
42. Smith CA, Rodman JR, Chenuel BJ, Henderson KS, Dempsey JA. Response time and
sensitivity of the ventilatory response to CO 2 in unanesthetized intact dogs: central vs.
peripheral chemoreceptors. J Appl Physiol . 2006;100:13-19.
43. Duffin J, McAvoy GV. The peripheral-chemoreceptor threshold to carbon dioxide in
man. J Physiol . 1988;406:15-26.
44. Wang W, Pizzonia JH, Richerson GB. Chemosensitivity of rat medullary raphe neu-
rones in primary tissue culture. J Physiol . 1998;511(Pt. 2):433-450.
45. Wang W, Tiwari JK, Bradley SR, Zaykin RV, Richerson GB. Acidosis-stimulated
neurons of the medullary raphe are serotonergic. J Neurophysiol . 2001;85:2224-2235.
46. Bradley SR, Pieribone VA, Wang W, Severson CA, Jacobs RA, Richerson GB.
Chemosensitive serotonergic neurons are closely associated with large medullary arter-
ies. Nat Neurosci . 2002;5:401-402.
47. Wang W, Bradley SR, Richerson GB. Quantification of the response of rat medullary
raphe neurones
to independent changes
in pH(o)
and P(CO2).
J Physiol .
2002;540:951-970.
 
 
 
 
Search WWH ::




Custom Search