Biology Reference
In-Depth Information
92. Harrington ME. The ventral lateral geniculate nucleus and the intergeniculate leaflet:
interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev .
1997;21:705-727.
93. Challet E, Denis I, Rochet V, et al. The role of PPARbeta/delta in the regulation of
glutamatergic signaling in the hamster suprachiasmatic nucleus. Cell Mol Life Sci .
2013;70:2003-2014.
94. Challet E, Malan A, Turek FW, Van Reeth O. Daily variations of blood glucose,
acid-base state and PCO2 in rats: effect of
light exposure. Neurosci Lett .
2004;355:131-135.
95. Rai D, Bhatia G, Sen T, Palit G. Comparative study of perturbations of peripheral
markers in different stressors in rats. Can J Physiol Pharmacol . 2003;81:1139-1146.
96. Redlin U. Neural basis and biological function of masking by light in mammals: sup-
pression of melatonin and locomotor activity. Chronobiol Int . 2001;18:737-758.
97. Tsai JW, Hannibal J, Hagiwara G, et al. Melanopsin as a sleep modulator: circadian gat-
ing of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-)
mice. PLoS Biol . 2009;7:e1000125.
98. Yamamoto H, Nagai K, Nakagawa H. Role of SCN in daily rhythms of plasma glucose,
FFA, insulin and glucagon. Chronobiol Int . 1987;4:483-491.
99. Kalsbeek A, Strubbe JH. Circadian control of insulin secretion is independent of the
temporal distribution of feeding. Physiol Behav . 1998;63:553-558.
100. Kalsbeek A, Fliers E, Romijn JA, et al. The suprachiasmatic nucleus generates the diur-
nal changes in plasma leptin levels. Endocrinology . 2001;142:2677-2685.
101. Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS. Independent circadian and
sleep/wake regulation of adipokines and glucose in humans.
J Clin Endocrinol Metab .
2005;90:2537-2544.
102. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian
metabolome. Proc Natl Acad Sci USA . 2012;109:2625-2629.
103. Inouye SI. Restricted daily feeding does not entrain circadian rhythms of the sup-
rachiasmatic nucleus in the rat. Brain Res . 1982;232:194-199.
104. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian
clock in the liver by feeding. Science . 2001;291:490-493.
105. Iwanaga H, Yano M, Miki H, et al. Per2 gene expressions in the suprachiasmatic
nucleus and liver differentially respond to nutrition factors in rats. J Parenter Enteral Nutr .
2005;29:157-161.
106. Mendoza J, Drevet K, Pevet P, Challet E. Daily meal timing is not necessary for reset-
ting the main circadian clock by calorie restriction. J Neuroendocrinol . 2008;20:251-260.
107. Challet E. Interactions between light, mealtime and calorie restriction to control daily
timing in mammals. J Comp Physiol B . 2010;180:631-644.
108. Mendoza J, Gourmelen S, Dumont S, Sage-Ciocca D, Pevet P, Challet E. Setting the
main circadian clock of a diurnal mammal by hypocaloric feeding.
J Physiol (Lond) .
2012;590:3155-3168.
109. Oishi K, Uchida D, Ohkura N, et al. Ketogenic diet disrupts the circadian clock and
increases hypofibrinolytic risk by inducing expression of plasminogen activator
inhibitor-1. Arterioscler Thromb Vasc Biol . 2009;29:1571-1577.
110. Hut RA, Pilorz V, Boerema AS, Strijkstra AM, Daan S. Working for food shifts noc-
turnal mouse activity into the day. PLoS One . 2011;6:e17527.
111. Mendoza J, Angeles-Castellanos M, Escobar C. A daily palatable meal without food
deprivation entrains
the
suprachiasmatic nucleus of
rats.
Eur
J Neurosci .
2005;22:2855-2862.
112. Mendoza J, Clesse D, Pevet P, Challet E. Food-reward signalling in the suprachiasmatic
clock.
J Neurochem . 2010;112:1489-1499.
 
 
 
 
 
 
Search WWH ::




Custom Search