Biology Reference
In-Depth Information
72. Zvonic S, Ptitsyn AA, Conrad SA, et al. Characterization of peripheral circadian clocks
in adipose tissues. Diabetes . 2006;55:962-970.
73. Hirao A, Nagahama H, Tsuboi T, Hirao M, Tahara Y, Shibata S. Combination of star-
vation interval and food volume determines the phase of liver circadian rhythm in
Per2::Luc knock-in mice under two meals per day feeding. Am J Physiol Gastrointest
Liver Physiol . 2010;299:G1045-G1053.
74. Balsalobre A, Brown SA, Marcacci L, et al. Resetting of circadian time in peripheral
tissues by glucocorticoid signaling. Science . 2000;289:2344-2347.
75. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y. Glucose
down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in
cultured Rat-1 fibroblasts. J Biol Chem . 2002;277:44244-44251.
76. Wu T, Ni Y, Kato H, Fu Z. Feeding-induced rapid resetting of the hepatic circadian
clock is associated with acute induction of Per2 and Dec1 transcription in rats. Chro-
nobiol Int . 2010;27:1-18.
77. Tahara Y, Otsuka M, Fuse Y, Hirao A, Shibata S. Refeeding after fasting elicits insulin-
dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock.
J Biol
Rhythms . 2011;26:230-240.
78. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. The dorsomedial
hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl
Acad Sci USA . 2006;103:12150-12155.
79. Waddington Lamont E, Harbour VL, Barry-Shaw J, et al. Restricted access to food, but
not sucrose, saccharine, or salt, synchronizes the expression of Period2 protein in the
limbic forebrain. Neuroscience . 2007;144:402-411.
80. Mendoza J, Pevet P, Felder-Schmittbuhl MP, Bailly Y, Challet E. The cerebellum har-
bors a circadian oscillator involved in food anticipation. J Neurosci . 2010;30:1894-1904.
81. Rath MF, Rohde K, Moller M. Circadian oscillations of molecular clock components
in the cerebellar cortex of the rat. Chronobiol Int . 2012;29:1289-1299.
82. Hogenesch JB, Herzog ED. Intracellular and intercellular processes determine robust-
ness of the circadian clock. FEBS Lett . 2011;585:1427-1434.
83. Ximenes da Silva A, Gendrot G, Serviere J, Lavialle M. Daily changes of cytochrome
oxidase activity within the suprachiasmatic nucleus of the Syrian hamster. Neurosci Lett .
2000;286:139-143.
84. Isobe Y, Hida H, Nishino H. Circadian rhythm of metabolic oscillation in sup-
rachiasmatic nucleus depends on the mitochondrial oxidation state, reflected by cyto-
chrome C oxidase and lactate dehydrogenase. J Neurosci Res . 2011;89:929-935.
85. Schwartz WJ, Davidsen LC, Smith CB. In vivo metabolic activity of a putative circa-
dian oscillator, the rat suprachiasmatic nucleus. J Comp Neurol . 1980;189:157-167.
86. Allen G, Rappe J, Earnest DJ, Cassone VM. Oscillating on borrowed time: diffusible
signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity
in cultured fibroblasts. J Neurosci . 2001;21:7937-7943.
87. Gillette MU. The suprachiasmatic nuclei: circadian phase-shifts induced at the time of
hypothalamic slice preparation are preserved in vitro. Brain Res . 1986;379:176-181.
88. Wang YC, Yang JJ, Huang RC. Intracellular Na( รพ ) and metabolic modulation of
Na/K pump and excitability in the
rat
suprachiasmatic nucleus neurons.
J Neurophysiol . 2012;108:2024-2032.
89. Wang TA, Yu YV, Govindaiah G, et al. Circadian rhythm of redox state regulates
excitability in suprachiasmatic nucleus neurons. Science . 2012;337:839-842.
90. Paul KN, Saafir TB, Tosini G. The role of retinal photoreceptors in the regulation of
circadian rhythms. Rev Endocr Metab Disord . 2009;10:271-278.
91. Meijer JH, Michel S, Vansteensel MJ. Processing of daily and seasonal light information
in the mammalian circadian clock. Gen Comp Endocrinol . 2007;152:159-164.
 
 
 
Search WWH ::




Custom Search