Biology Reference
In-Depth Information
59. Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C. Food
intake during the normal activity phase prevents obesity and circadian desynchrony in
a rat model of night work. Endocrinology . 2010;151:1019-1029.
60. Salgado-Delgado R, Angeles-Castellanos M, Buijs MR, Escobar C. Internal
desynchronization in a model of night-work by forced activity in rats. Neuroscience .
2008;154:922-931.
61. Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U. Glucocorticoid hormones
inhibit
food-induced phase-shifting of peripheral circadian oscillators.
EMBO J .
2001;20:7128-7136.
62. Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian
resynchronization in a mouse model of jet lag. J Clin Invest . 2010;120:2600-2609.
63. Angeles-Castellanos M, Amaya JM, Salgado-Delgado R, Buijs RM, Escobar C. Sched-
uled food hastens re-entrainment more than melatonin does after a 6-h phase advance of
the light-dark cycle in rats. J Biol Rhythms . 2011;26:324-334.
64. Yamamoto T, Nakahata Y, Tanaka M, et al. Acute physical stress elevates mouse period1
mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element.
J Biol Chem . 2005;280:42036-42043.
65. La Fleur SE, Kalsbeek A, Wortel J, Fekkes ML, Buijs RM. A daily rhythm in glucose
tolerance: a role for the suprachiasmatic nucleus. Diabetes . 2001;50:1237-1243.
66. Hirota T, Okano T, Kokame K, Shirotani-Ikejima H, Miyata T, Fukada Y. Glucose
down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression
in cultured Rat-1 fibroblasts. J Biol Chem . 2002;277:44244-44251.
67. Oike H, Nagai K, Fukushima T, Ishida N, Kobori M. Feeding cues and injected nutri-
ents induce acute expression of multiple clock genes in the mouse liver. PLoS One .
2011;6:e23709.
68. Davidson AJ, Poole AS, Yamazaki S, Menaker M. Is the food-entrainable circadian oscil-
lator in the digestive system? Genes Brain Behav . 2003;2:32-39.
69. Vollmers C, Gill S, Ditacchio L, Pulivarthy SR, Le HD, Panda S. Time of feeding and
the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci
USA . 2009;106:21453-21458.
70. Horikawa K, Minami Y, Iijima M, Akiyama M, Shibata S. Rapid damping of food-
entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues
under fasting conditions. Neuroscience . 2005;134:335-343.
71. Satoh Y, Kawai H, Kudo N, Kawashima Y, Mitsumoto A. Time-restricted feeding
entrains daily rhythms of energy metabolism in mice. Am J Physiol Regul Integr Comp Phy-
siol . 2006;290:R1276-R1283.
72. Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA bind-
ing by the redox state of NAD cofactors. Science . 2001;293:510-514.
73. Revollo JR, Korner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion
in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab . 2007;6:363-375.
74. Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expres-
sion through PER2 deacetylation. Cell . 2008;134:317-328.
75. Belden WJ, Dunlap JC. SIRT1 is a circadian deacetylase for core clock components.
Cell . 2008;134:212-214.
76. Diaz-Munoz M, Vazquez-Martinez O, Aguilar-Roblero R, Escobar C. Anticipatory
changes in liver metabolism and entrainment of insulin, glucagon, and corticosterone
in food-restricted rats. Am J Physiol Regul Integr Comp Physiol . 2000;279:R2048-R2056.
77. Cardaci S, Filomeni G, Ciriolo MR. Redox implications of AMPK-mediated signal
transduction beyond energetic clues. J Cell Sci . 2012;125:2115-2125.
78. Carling D, Thornton C, Woods A, Sanders MJ. AMP-activated protein kinase: new reg-
ulation, new roles? Biochem J . 2012;445:11-27.
 
 
Search WWH ::




Custom Search