Biology Reference
In-Depth Information
38. Jasper MS, Engeland WC. Splanchnic neural activity modulates ultradian and circadian
rhythms in adrenocortical secretion in awake rats. Neuroendocrinology . 1994;59:97-109.
39. Buijs RM, Wortel J, Van Heerikhuize JJ, et al. Anatomical and functional demonstration
of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci .
1999;11:1535-1544.
40. Ishida A, Mutoh T, Ueyama T, et al. Light activates the adrenal gland: timing of gene
expression and glucocorticoid release. Cell Metab . 2005;2:297-307.
41. Cailotto C, Lei J, van der Vliet J, et al. Effects of nocturnal light on (clock) gene expres-
sion in peripheral organs: a role for the autonomic innervation of the liver. PLoS One .
2009;4:e5650.
42. Terazono H, Mutoh T, Yamaguchi S, et al. Adrenergic regulation of clock gene expres-
sion in mouse liver. Proc Natl Acad Sci USA . 2003;100:6795-6800.
43. Balsalobre A, Brown SA, Marcacci L, et al. Resetting of circadian time in peripheral tis-
sues by glucocorticoid signaling. Science . 2000;289:2344-2347.
44. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression
in mammalian tissue culture cells. Cell . 1998;93:929-937.
45. Brown S, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U. Rhythms of
mammalian body temperature can sustain peripheral circadian clocks. Curr Biol .
2002;12:1574.
46. Morf J, Rey G, Schneider K, et al. Cold-inducible RNA-binding protein modulates cir-
cadian gene expression posttranscriptionally. Science . 2012;338:379-383.
47. Cettour-Rose P, Samec S, Russell AP, et al. Redistribution of glucose from skeletal
muscle to adipose tissue during catch-up fat: a link between catch-up growth and later
metabolic syndrome. Diabetes . 2005;54:751-756.
48. Uno K, Katagiri H, Yamada T, et al. Neuronal pathway from the liver modulates energy
expenditure and systemic insulin sensitivity. Science . 2006;312:1656-1659.
49. Samec S, Seydoux J, Dulloo AG. Interorgan signaling between adipose tissue metabolism
and skeletal muscle uncoupling protein homologs: is there a role for circulating free fatty
acids? Diabetes . 1998;47:1693-1698.
50. Veniant MM, Hale C, Helmering J, et al. FGF21 promotes metabolic homeostasis via
white adipose and leptin in mice. PLoS One . 2012;7:e40164.
51. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. System-driven and
oscillator-dependent circadian transcription in mice with a conditionally active liver
clock. PLoS Biol . 2007;5:e34.
52. Hughes ME, Hong HK, Chong JL, et al. Brain-specific rescue of Clock reveals system-
driven transcriptional rhythms in peripheral tissue. PLoS Genet . 2012;8:e1002835.
53. Wu T, Jin Y, Ni Y, Zhang D, Kato H, Fu Z. Effects of light cues on re-entrainment of
the food-dominated peripheral clocks in mammals. Gene . 2008;419:27-34.
54. Kalsbeek A, Barassin S, Van Heerikhuize JJ, Van der Vliet J, Buijs RM. Restricted
daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an
8-h phase advance of the light-dark cycle. J Biol Rhythms . 2000;15:57-66.
55. Kalsbeek A, Van Heerikhuize JJ, Wortel J, Buijs RM. Restricted daytime feeding
modifies
suprachiasmatic nucleus vasopressin release in rats.
J Biol Rhythms .
1998;13:18-29.
56. Aceves C, Escobar C, Rojas-Huidobro R, et al. Liver 5'-deiodinase activity is modified
in rats under restricted feeding schedules: evidence for post-translational regulation.
J Endocrinol . 2003;179:91-96.
57. Escobar C, Diaz-Munoz M, Encinas F, Aguilar-Roblero R. Persistence of metabolic
rhythmicity during fasting and its entrainment by restricted feeding schedules in rats.
Am J Physiol . 1998;274:R1309-R1316.
58. Krieger DT. Food and water restriction shifts corticosterone, temperature, activity and
brain amine periodicity. Endocrinology . 1974;95:1195-1201.
 
 
Search WWH ::




Custom Search