Biomedical Engineering Reference
In-Depth Information
Dayan P, Abbott LF (2001) Theoretical Neuroscience: Computational and Mathematical Modeling
of Neural Systems. The MIT Press, Cambridge.
Dieckmann, GR, Dalton, AB, Johnson, PA, Razal, J, Chen, J, Giordano, GM, Munoz, E,
Musselman, I H, Baughman, RH, Draper, RK. (2003) Controlled Assembly of Carbon
Nanotubes by Designed Amphiphilic Peptide Helices. J. Am. Chem. Soc. 125:1770.
Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S,
Bianco A (2006) Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the
Functionality of Primary Immune Cells. Nano Lett. 6:152-8.
Freitag M (2006) Carbon nanotube electronics and devices. In “Carbon Nanotubes: Properties and
Applicatons”, O'Connell MJ ed., CRC Press, pp. 83-117.
Fromherz P (2002) Electrical Interfacing of Nerve Cells and Semiconductor Chips. Chem. Phys.
Chem. 3(3):276-84.
Fuhrer MS, Forero M, Zettl A, McEuen PL (2001) Ballistic transport in semiconducting carbon
nanotubes. AIP Conf. Proc. 591:401-404.
Gabay T, Ben-David M, Kalifa I, Sorkin R, Abrams ZR, Ben-Jacob E, Hanein Y (2007) Electro-
chemical biological properties of carbon nanotube based multi-electrode arrays. Nanotech
1:035201, doi:101088/0957-4484/18/3/035201.
Geddes LA (1972) Electrodes the Measurement of Bioelectric Events. New York: Wiley-
Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic
Functionalization of Carbon Nanotubes, J. Am. Chem. Soc. 124(5): 760-1.
Gheith MK, Pappas TC, Liopo AV, Sinani V, Shim BS, Motamedi M, Wicksted JP, Kotov NA
(2006) Stimulation of neural cells by lateral currents in conductive layer-by-layer fi lms of
single-walled carbon nanotubes. Adv Mater 18:2975-9.
Girault HH (2004) Analytical and Chemical Electrochemistry. Marcel Dekker, Inc., New York,
Giugliano M, Prato M, Ballerini L (2008) Nanomaterial/neuronal hybrid system for functional
recovery of the CNS. Drug Discov. Today: Disease Model, doi:10.1016/j.ddmod.2008.07.004.
Gold C, Henze DA, Koch C, Buzsaki G (2006) On the origin of the extracellular action potential
waveform: A modeling study. J Neurophysiol 95:3113-28.
Graham AP, Duesberg GS, Seidel RV, Liebau M, Unger E, Pamler W, Kreupl F, Hoenlein W.
(2005) Carbon nanotubes for microelectronics? Small 1(4):382-90.
Grattarola M, Martinoia S (1993) Modeling the neuron-microtransducer junction: from extracel-
lular to patch recording. IEEE Trans Biomed Eng 40(1):35-41.
Gruner G. (2006) Carbon nanotube transistors for biosensing applications. Anal. Bioanal. Chem.
2006 Jan;384(2):322-35.
Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to
Support Computational Neuroscience. J. Comput. Neurosci. 17(1):7-11.
Hodgkin AL, Huxley, AF (1952) A quantitative description of membrane current and its applica-
tion to conduction and excitation in nerve. J Physiol. 117(4):500-44.
Hu, H, Ni, Y, Montana, V, Haddon, RC, Parpura, V. (2004) Chemically Functionalized Carbon
Nanotubes as Substrates for Neuronal Growth. Nano Lett. 4:507-11.
Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V (2005) Polyethyleneimine
functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys.
Chem. B 109:4285-9.
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354, 56-58.
Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603-5.
Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-
Berry D, Mercer R, Castranova V, A.A. Shvedova (2006) Direct and indirect effects of single
walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett. 165:88-100.
Katz E, Willner I (2004) Biomolecule-Functionalized Carbon Nanotubes: Applications in
Nanobioelectronics Chem. Phys. Chem. 5:1084.
Keefer KW, Botterman BR, Romero MI, Rossi AF, Gross GW (2008) Carbon nanotube coating
improves neuronal recordings. Nature Nanotech. 3:434-9.
Search WWH ::

Custom Search