Biomedical Engineering Reference
In-Depth Information
as the presence of signal transduction reminiscent of an intracellular, though
noninvasive recording, should be specifi cally addressed to develop new (nano)
technological tools to probe the brain.
Acknowledgments Authors acknowledge fi nancial support from the Italian Ministry of University
and Research (Cofi n and FIRB), from the École Polytechnique Fédérale de Lausanne EPFL, from
the European Commission (NEURONANO-NMP4-CT-2006-031847), and from the “Stoicescu”
grant. M.G. and L.G. are grateful to Prof. H. Markram, C. Petersen, and S. Martinoia for helpful
discussions and to S. Garcia and K. Antoniello for assistance.
References
Avouris P, Radosavljevic M, Wind SJ (2005) Carbon Nanotube Electronics and Optoelectronics, in
“Applied Physics of Carbon Nanotubes, Fundamentals of Theory, Optics and Transport
Devices”, (Rotkin SV, Subramoney S, eds.), Springer Berlin, 227-49.
Avouris P, Chen J (2006) Nanotube electronics and optoelectronics. Materials Today 9, 46-54.
Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nature Nanotech. 2, 605-615.
Bachtold A, Fuhrer MS, Plyasunov S, Forero M, Anderson EH, Zettl A, McEuen PL. (2000)
Scanned probe microscopy of electronic transport in carbon nanotubes. Phys Rev Lett. 84(26 Pt 1):
6082-5.
Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C (1999) Helical
Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of
New Biosensors. Angew. Chem. Int. Ed. 38:1912-1915.
Bollobás B (2001) Random graphs (2nd ed.), Cambridge University Press.
Benabid AL, Wallace B, Mitrofanis J, Xia C, Piallat B, Fraix V, Batir A, Krack P, Pollak P, Berger, F
(2005) Therapeutic electrical stimulation of the central nervous system. C R Biol 328(2):
177-86.
Bethune DS, Kiang CHM, de Vries S, Gorman G, Savoy R, Vazquez, J, Beyers R (1993) Cobalt-
catalyzed Growth of Carbon Nanotubes with Single-atomic-layer Walls. Nature 363:605-7.
Bockris J, Reddy AKN, Gamoa-Aldeco M (2000) Modern Electrochemistry 2A: Fundamentals of
Electrodics, 2 nd ed., Kluwer Academic, New York (USA).
Carnevale NT, Hines ML (2006) The NEURON topic. Cambridge University Press, Cambridge, UK.
Chen RJ, Bangsaruntip S, Drouvalakisdagger KA, Wong Shi Kam N, Shim M, Li Y, Kim W,
Utzdagger PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly
specifi c electronic biosensors. Proc. Natl. Acad. Sci. U S A 100(9):4984-9.
Chua LO (1980) Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst.
27:1014-44.
Chen, RJ, Zhang, Y, Wang, D, Dai, HJ. (2001) Noncovalent Sidewall Functionalization of Single-
Walled Carbon Nanotubes for Protein Immobilization. Am. Chem. Soc. 123:3838-9.
Cellot, G, Cilia, E, Cipollone, S, Rancic, V, Sucapane, A, Giordani, S, Gambazzi, L, Markram, H,
Grandolfo, M, Scaini, D, Gelain, F, Casalis, L, Prato, M, Giugliano, M and Ballerini, L. (2009)
Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat
Nanotechnol 4:126-133.
Correa-Duarte M, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004)
Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for
Cell Seeding and Growth. Nano Letters 4 (11):2233-6.
Crespo GA, Macho S, Rius FX (2008) Ion-Selective Electrodes Using Carbon Nanotubes as
Ion-to-Electron Transducers. Analytical Chem. 80(4):1316-22.
Czerw R, Edell D, Farrell B, Fooksa R, Phely-Bobin T, Robblee L, Tiano T (2006) Carbon
Nanotube Based Electrodes for Neuroprosthetic Applications. Material Res. Soc. Symposium
Proc. 926:19-24, Warrendale, Pa. USA.
Search WWH ::




Custom Search