Biomedical Engineering Reference
In-Depth Information
120. Hu J, Liu XH, and Ma PX. Induction of osteoblast differentiation phenotype on
poly(L-lactic acid) nanofibrous matrix. Biomaterials 2008;29:3815-21.
121. Leong MF, Rasheed MZ, Lim TC, and Chian KS. In vitro cell infiltration and in
vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-
lactide) scaffold fabricated by cryogenic electrospinning technique. J. Biomed.
Mater. Res. A 2008;1:231-40.
122. Simonet M, Schneider OD, Neuenschwander P, and Stark WJ. Ultraporous 3D
polymer meshes by low-temperature electrospinning: Use of ice crystals as a
removable void template. Polym. Eng. Sci. 2007;47:2020-6.
123. Kim HW, Lee HH, and Chun GS. Bioactivity and osteoblast responses of novel
biomedical nanocomposites of bioactive glass nanofiber filled poly(lactic acid).
J. Biomed. Mater. Res. A 2008;85A:651-63.
124. Schneider OD, Loher S, Brunner TJ et al. Cotton wool-like nanocomposite bio-
materials prepared by electrospinning: In vitro bioactivity and osteogenic dif-
ferentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. B Appl.
Biomater. 2008;84B:350-62.
125. Fujihara K, Kotaki M, and Ramakrishna S. Guided bone regeneration mem-
brane made of polycaprolactone/calcium carbonate composite nano-fibers.
Biomaterials 2005;26:4139-47.
126. Wutticharoenmongkol P, Sanchavanakit N, Pavasant P, and Supaphol P.
Preparation and characterization of novel bone scaffolds based on electrospun
polycaprolactone fibers filled with nanoparticles. Macromol. Biosci. 2006;6:70-7.
127. Kim KH, Jeong L, Park HN et al. Biological efficacy of silk fibroin nanofiber
membranes for guided bone regeneration. J. Biotechnol. 2005;120:327-39.
128. Fu Y, Nie H, Ho M, Wang C, Huang H, and Wang C. Optimized bone regenera-
tion based on sustained release from 3D scaffold. Calcif. Tissue Int. 2008;82:S64-5.
129. Shin M, Yoshimoto H, and Vacanti JP. In vivo bone tissue engineering using mes-
enchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng.
2004;10:33-41.
130. Piskin E, Isoglu IA, Bolgen N et al. In vivo performance of simvastatin-loaded
electrospun spiral-wound polycaprolactone scaffolds in reconstruction of cra-
nial bone defects in the rat model. J. Biomed. Mater. Res. A 2008;4:1137-51.
131. Colvin VL. The potential environmental impact of engineered nanomaterials.
Nat. Biotechnol. 2003;21:1166-70.
132. Kipen HM and Laskin DL. Smaller is not always better: Nanotechnology yields
nanotoxicology. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005;289:L696-7.
133. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, and Castranova V.
Exposure to carbon nanotube material: Aerosol release during the handling of
unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health A
2004;67:87-107.
134. Oberdorster E, Zhu SQ, Blickley TM, McClellan-Green P, and Haasch ML.
Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene
(C-60) on aquatic organisms. Carbon 2006;44:1112-20.
135. Oberdorster G, Oberdorster E, and Oberdorster J. Nanotoxicology: An emerging
discipline evolving from studies of ultrafine particles. Environ. Health Perspect.
2005;113:823-39.
136. Shvedova AA, Castranova V, Kisin ER et al. Exposure to carbon nanotube
material: Assessment of nanotube cytotoxicity using human keratinocyte cells.
J. Toxicol. Environ. Health A 2003;66:1909-26.
Search WWH ::




Custom Search