Biomedical Engineering Reference
In-Depth Information
102. Amelinckx S, Zhang XB, Bernaerts D, Zhang XF, Ivanov V, and Nagy JB. A for-
mation mechanism for catalytically grown helix-shaped graphite nanotubes.
Science 1994;265:635-9.
103. Nikolaev P. Gas-phase production of single-walled carbon nanotubes from
carbon monoxide: A review of the HiPco process. J. Nanosci. Nanotechnol.
2004;4:307-16.
104. Webster TJ and Ejiofor JU. Increased osteoblast adhesion on nanophase metals:
Ti, Ti6Al4V, and CoCrMo. Biomaterials 2004;25:4731-9.
105. de Oliveira PT and Nanci A. Nanotexturing of titanium-based surfaces upregu-
lates expression of bone sialoprotein and osteopontin by cultured osteogenic
cells. Biomaterials 2004;25:403-13.
106. Elias KL, Price RL, and Webster TJ. Enhanced functions of osteoblasts on nano-
meter diameter carbon fibers. Biomaterials 2002;23:3279-87.
107. Kay S, Thapa A, Haberstroh KM, and Webster TJ. Nanostructured polymer/
nanophase ceramic composites enhance osteoblast and chondrocyte adhesion.
Tissue Eng. 2002;8:753-61.
108. Webster TJ, Siegel RW, and Bizios R. Design and evaluation of nanophase alu-
mina for orthopaedic/dental applications. Nanostruct. Mater. 1999;12:983-6.
109. Webster TJ, Siegel RW, and Bizios R. Osteoblast adhesion on nanophase ceram-
ics. Biomaterials 1999;20:1221-7.
110. Du C, Cui FZ, Zhu XD, and de Groot K. Three-dimensional nano-HAp/
collagen matrix loading with osteogenic cells in organ culture. J. Biomed. Mater.
Res. 1999;44:407-15.
111. Zhu XL, Eibl O, Scheideler L, and Geis-Gerstorfer J. Characterization of nano
hydroxyapatite/collagen surfaces and cellular behaviors. J. Biomed. Mater. Res.
A 2006;79A:114-27.
112. Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, and Becker J. Surface-
and nonsurface-dependent in vitro effects of bone substitutes on cell viability.
Clin. Oral Investig. 2008;2:149-55.
113. Laschke MW, Witt K, Pohlemann T, and Menger MD. Injectable nanocrystalline
hydroxyapatite paste for bone substitution: In vivo analysis of biocompatibility
and vascularization. J. Biomed. Mater. Res. B Appl. Biomater. 2007;82:494-505.
114. Busenlechner D, Tangl S, Mair B et al. Simultaneous in vivo comparison of bone
substitutes in a guided bone regeneration model. Biomaterials 2008;29:3195-200.
115. Rothamel D, Schwarz F, Herten M et al. Dimensional ridge alterations following
socket preservation using a nanocrystalline oxyapatite paste. A histomorpho-
metrical study in dogs. Int. J. Oral Maxillofac. Surg. 2008;37:741-7.
116. Meirelles L, Albrektsson T, Kjellin P et al. Bone reaction to nano hydroxyapatite
modified titanium implants placed in a gap-healing model. J. Biomed. Mater. Res.
A 2008;87A:624-31.
117. Shields KJ, Beckman MJ, Bowlin GL, and Wayne JS. Mechanical proper-
ties and cellular proliferation of electrospun collagen type II. Tissue Eng.
2004;10:1510-7.
118. Zhang Y, Venugopal JR, El Turki A, Ramakrishna S, Su B, and Lim CT.
Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan
for bone tissue engineering. Biomaterials 2008;29:4314-22.
119. Zhang YZ, Ouyang HW, Lim CT, Ramakrishna S, and Huang ZM. Electrospin-
ning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J. Biomed.
Mater. Res. B Appl. Biomater. 2005;72B:156-65.
Search WWH ::




Custom Search