Biomedical Engineering Reference
In-Depth Information
49. Lecoanet, H.F., Bottero, J.Y., and Wiesner, M.R. Laboratory assessment of the
mobility of nanomaterials in porous media. Environ. Sci. Technol. , 38, 5164, 2004.
50. Domingos, R.F. et al. Characterizing manufactured nanoparticles in the envi-
ronment—Multimethod determination of particle sizes. Environ. Sci. Technol. ,
43, 7277-7284, 2009.
51. Domingos, R.F., Tufenkji, N., and Wilkinson, K.J. Aggregation of titanium diox-
ide nanoparticles: Role of a fulvic acid. Environ. Sci. Technol. , 43, 1282-1286, 2009.
52. Fang, J. et al. Stability of titania nanoparticles in soil suspensions and transport
in saturated homogeneous soil columns. Environ. Pollut. , 157, 1101, 2009.
53. Darlington, T.K. et al. Nanoparticle characteristics affecting environmental fate
and transport through soil. Environ. Toxicol. Chem. , 28, 1191, 2009.
54. Johnson, R.L. et al. Natural organic matter enhanced mobility of nano zerovalent
iron. Environ. Sci. Technol. , Article ASAP DOI: 10.1021/es900474f, 43, 5455, 2009.
55. Buzea, C., Pacheco, I.I., and Robbie, K. Nanomaterials and nanoparticles:
sources and toxicity. Biointerphases , 2, MR17, 2007.
56. Stampoulis, D., Sinha, S.K., and White, J.C. Assay-dependent phytotoxicity of
nanoparticles to plants. Environ. Sci. Technol ., 43, 9473, 2009.
57. Koper, O.B. et al. Nanoscale powders and formulations with biocidal activity
toward spores and vegetative cells of Bacillus species, viruses, and toxins. Curr.
Microbiol. , 44, 49, 2002.
58. Male, K.B. et al. Assessment of cytotoxicity of quantum dots and gold nanopar-
ticles using cell-based impedance spectroscopy. Anal. Chem. , 80, 5487, 2008.
59. Mahendra, S. et al. Quantum dot weathering results in microbial toxicity.
Environ. Sci. Technol. , 42, 9424, 2008.
60. Metz, K.M. et al. Engineered nanomaterial transformation under oxidative envi-
ronmental conditions: Development of an in vitro biomimetic assay. Environ. Sci.
Technol. , 43, 1598, 2009.
61. Priester, J.H. et al. Effects of soluble cadmium salts versus CdSe quantum dots
on the growth of planktonic Pseudomonas aeruginosa . Environ. Sci. Technol. , 43,
2589, 2009.
62. Brown, C.L. et al. Colloidal metallic gold is not bio-inert. Inflammopharmacology, ,
16, 133, 2008.
63. Phenrat, T. et al. Partial oxidation (“aging”) and surface modification decrease
the toxicity of nanosized zerovalent iron. Environ. Sci. Technol ., 43, 195, 2009.
64. Barrena, R. et al. Evaluation of the ecotoxicity of model nanoparticles.
Chemosphere , 75, 850, 2009.
65. Roh, J.Y. et al. Ecotoxicity of silver nanoparticles on the soil nematode
Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. ,
43, 3933, 2009.
66. Cha, K. et al. Comparison of acute responses of mice livers to short-term expo-
sure to nano-sized or micro-sized silver particles. Biotechnol. Lett ., 30, 1893, 2008.
67. Sung, J.H. et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol.
Sci ., 108, 452, 2009.
68. Griffitt, R.J. et al. Exposure to copper nanoparticles causes gill injury and acute
lethality in zebrafish ( Danio rerio ). Environ. Sci. Technol. , 41, 8178, 2007.
69. Lee, W.-M. et al. Toxicity and bioavailability of copper nanoparticles to the terres-
trial plants mung bean ( Phaseolus radiatus ) and wheat ( Triticum aestivum ): Plant agar
test for water-insoluble nanoparticles. Environ. Toxicol. Chem ., 27, 1915, 2008.
Search WWH ::




Custom Search