Biomedical Engineering Reference
In-Depth Information
70. Lin, D. and Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germina-
tion and root growth. Environ. Pollut. , 150, 243, 2007.
71. Doshi, R. et al. Nano-aluminum: Transport through sand columns and environ-
mental effects on plants and soil communities. Environ. Res. , 106, 296, 2008.
72. Papageorgiou, I. et al. The effect of nano- and micron-sized particles of cobalt-
chromium alloy on human fibroblasts in vitro . Biomaterials , 28, 2946, 2007.
73. Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physi-
cochemical and environmental factors. Environ. Health Perspect. , 114, 165, 2006.
74. Kloepfer, J.A., Mielke, R.E., and Nadeau, J.L. Uptake of CdSe and CdSe/ZnS
quantum dots into bacteria via purine-dependent mechanisms. Appl. Environ.
Microbiol. , 71, 2548, 2005.
75. Bouldin, J.L. et al. Aqueous toxicity and food chain transfer of quantum dots in
freshwater algae and Ceriodaphnia dubia . Environ. Toxicol. Chem. , 27, 1958, 2008.
76. Lee, J. et al. Acute toxicity of two CdSe/ZnSe quantum dots with different sur-
face coating in Daphnia magna under various light conditions. Environ. Toxicol. ,
DOI: 10.1002/tox.20520, 25, 593, 2010.
77. Zhang, Y. et al. In vitro and in vivo toxicity of CdTe nanoparticles. J. Nanosci.
Nanotechnol. , 7, 497, 2007.
78. Dumas, E.M. et al. Toxicity of CdTe quantum dots in bacterial strains. IEEE
Trans. Nanobiosci. , 8, 58, 2009.
79. Gagné, F. et al. Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts
on immune system, oxidative stress and genotoxicity. Aquat. Toxicol. , 86, 333,
2008.
80. Liu, L. et al. In vitro and in vivo assessment of CdTe and CdHgTe toxicity and
clearance. J. Biomed. Nanotechnol. , 4, 524, 2008.
81. Jiang, W., Mashayekhi, H., and Xing, B. Bacterial toxicity comparison between
nano- and micro-scaled oxide particles. Environ. Pollut. , 157, 1619, 2009.
82. Velzeboer, I. et al. Aquatic ecotoxicity tests of some nanomaterials. Environ.
Toxicol. Chem. , 27, 1942, 2008.
83. Wang, H., Wick, R.L., and Xing, B. Toxicity of nanoparticulate and bulk ZnO,
Al 2 O 3 and TiO 2 to the nematode Caenorhabditis elegans . Environ. Pollut. , 157, 1171,
2009.
84. Zhu, X.S. et al. Comparative toxicity of several metal oxide nanoparticle aque-
ous suspensions to zebrafish ( Danio rerio ) early developmental stage, J. Environ.
Sci. Health Pt-A-Toxic Hazard . Subst. Environ. Eng. , 43, 278, 2008.
85. Yang, L. and Watts, D.J. Particle surface characteristics may play an important
role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. , 158, 122, 2005.
86. Huang, L. et al. Controllable preparation of nano-MgO and investigation of its
bactericidal properties. J. Inorg. Biochem. , 99, 986, 2005.
87. Thill, A. et al. Cytotoxicity of CeO 2 nanoparticles for Escherichia coli . Physico-
chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. , 40, 6151,
2006.
88. Van Hoecke, K. et al. Fate and effects of CeO 2 nanoparticles in aquatic ecotoxic-
ity tests. Environ. Sci. Technol. , 43, 4537, 2009.
89. Lee, S.W., Kim, S.M., and Choi, J. Genotoxicity and ecotoxicity assays using
the freshwater crustacean Daphnia magna and the larva of the aquatic midge
Chironomus riparius to screen the ecological risks of nanoparticle exposure.
Environ. Toxicol. Pharmacol. , 28, 86, 2009.
Search WWH ::




Custom Search