Biomedical Engineering Reference
In-Depth Information
21.
P. Edwards, D. Hill, J. Little, and D. Hawkes, A three component deformation
model for image-guided surgery, Med. Image Anal., vol. 2, no. 4, pp. 355-367,
1998.
22.
M.I. Miga, Development and Quantification of a 3D Brain Deformation Model
for Model-Updated Image-Guided Stereotactic Neurosurgery, Ph.D. thesis,
Dartmouth College, Thayer School of Engineering, Hanover, N.H., 1998.
23.
M.I. Miga, K.D. Paulsen, P.J. Hoopes, F.E. Kennedy, A. Hartov, and D.W. Roberts,
In vivo modeling of interstitial pressure in the brain under surgical load using
finite elements, ASME J. Biomech. Eng., (in press), 1999.
24.
S.K. Kyriacou and C. Davatzikos, A biomechanical model of soft tissue defor-
mation, with applications to non-rigid registration of brain images with tumor
pathology, Lecture Notes in Computer Science: Medical Image Computing and Computer-
Assisted Intervention —MICCAI'98, vol. 1496, pp. 531-538, 1998.
25.
F.S. Yaacobson and D. Giovoli, An adaptive finite element procedure for image
segmentation problem, Communic. Numer. Methods Eng., vol. 14, no. 7, pp. 621-632,
1998.
26.
L. Lapidus and G.F. Pinder, Numerical Solution for Partial Differential Equations in
Science and Engineering, John Wiley & Sons, New York, 1982.
27.
M.I. Miga, K.D. Paulsen, J.M. Lemery, S.D. Eisner, A. Hartov, F.E. Kennedy, and
D.W. Roberts, Model-updated image guidance: initial clinical experiences with
gravity-induced brain deformation, IEEE Trans. Med. Imaging, vol. 18, no. 10,
pp. 866-874, 1999.
28.
M.I. Miga, K.D. Paulsen, and F.E. Kennedy, Von Neumann stability analysis of
Biot's general two-dimensional theory of consolidation, Int. J. Numer. Methods
Eng., vol. 43, pp. 955-974, 1998.
29.
M. Murad and A. Loula, Improved accuracy in finite element analysis of Biot's
consolidation problem, Comput. Methods Appl. Mech. Eng., vol. 95, pp. 359-382,
1992.
30.
M. Murad and A. Loula, On stability and convergence of finite element approx-
imations of Biot's consolidation problem, Int. J. Numer. Methods Eng., vol. 37,
pp. 645-667, 1994.
31.
K. Miller, Constitutive model of brain tissue suitable for finite element analysis
of surgical procedures, J. Biomechanics, vol. 32, pp. 531-537, 1999.
32.
M.I. Miga, K.D. Paulsen, P.J. Hoopes, F.E. Kennedy, A. Hartov, and D.W. Roberts, In
vivo quantification of a homogeneous brain deformation model for updating preop-
erative images during surgery, IEEE Trans. Biomed. Eng., vol. 47, no. 2, pp. 266- 273,
2000.
33.
M.I. Miga, K.D. Paulsen, P.J. Hoopes, F.E. Kennedy, A. Hartov, and D.W. Roberts,
In vivo analysis of heterogeneous brain deformation computations for model-
updated image guidance, Comp. Methods Biomechanics Biomed. Eng., 2000.
34.
C.E. Wolfla, T. G. Luerssen, R.M. Bowman, and T.K. Putty, Brain tissue pressure
gradients created by expanding frontal epidural mass lesion, J. Neurosurg., vol. 84,
pp. 642-647, 1996.
35.
C.E. Wolfla, T.G. Luerssen, and R.M. Bowman, Regional brain tissue pressure
gradients created by expanding extradural temporal mass legion, J. Neurosurg.,
vol. 86, pp. 505-510, 1997.
36.
P.J. Basser, J. Mattiello, and D. Le Bihan, Estimation of the effective self-diffusion
tensor from the NMR spin echo, J. Magn. Reson., Series B, vol. 103, pp. 247-254,
1994.
Search WWH ::




Custom Search