Biomedical Engineering Reference
In-Depth Information
4.
C.R. Maurer, D.L.G. Hill, A.J. Martin, H. Liu, M. McCue, D. Rueckert, D. Lloret,
W.A. Hall, R.E. Maxwell, D.J. Hawkes, and C.L. Truwit, Investigation of intra-
operative brain deformation using a 1.5-t interventional MR system: preliminary
results, IEEE Trans. Med. Imaging, vol. 17, no. 5, pp. 817-825, 1998.
5.
T.M. Moriarty, R. Kikinis, F.A. Jolesz, P.M. Black, and E. Alexander 3rd, Magnetic
resonance imaging therapy. Intraoperative MR imaging, Neurosurg. Clin. N. Am.,
vol. 7, pp. 323-331, 1996.
6.
R. Steinmeier, R. Fahlbusch, O. Ganslandt, C. Nimsky, M. Buchfelder, M. Kaus,
T. Heigl, R. Kuth, and W. Huk, Intraoperative magnetic resonance imaging with
the Magnetom open scanner: Concepts, neurosurgical indications, and proce-
dures: a preliminary report, Neurosurgery, vol. 43, no. 4, pp. 739-748, 1998.
7.
R. Bajcsy, R. Lieberson, and R. Reivich, A computerized system for the elastic
matching of deformed radiographic images to idealized atlas images, J. Comp.
Assist. Tomogr., vol. 7, pp. 618-625, 1983.
8.
G.E. Christensen, R.D. Rabbitt, and M.J. Miller, Deformable templates using large
deformation kinematics, IEEE Trans. on Image Process., vol. 5, no. 10, pp. 1435-
1447, 1996.
9.
S. Hakim, J.G. Venegas, and J.D. Burton, The physics of the cranial cavity, hy-
drocephalus and normal pressure hydrocephalus: mechanical interpretation and
mathematical model, Surg. Neurol., vol. 5, pp. 187-210, 1976.
10.
T. Doczi, Volume regulation of the brain tissue—a survey, Acta Neurochirurgica,
vol. 121, pp. 1-8, 1993.
11.
K.K. Mendis, R.L. Stalnaker, and S.H. Advani, A constitutive relationship for
large deformation finite element modeling of brain tissue, ASME J. Biomech. Eng.,
vol. 117, pp. 279-285, 1995.
12.
K. Miller and K. Chinzei, Constitutive modeling of brain tissue: experiment and
theory, J. Biomechanics, vol. 30, no. 11/12, pp. 1115-1121, 1997.
13.
B.R. Simon, J.P. Laible, D. Pflaster, Y. Yuan, and M.H. Krag, Poroelastic finite
element formulation including transport and swelling in soft tissue structures,
ASME J. Biomech. Eng., vol. 118, pp. 1-9, 1996.
14.
R.L. Spilker and J.K. Suh, Formulation and evaluation of a finite element model
for the biphasic model of hydrated soft tissue, Comp. Struct., vol. 35, no. 4, pp. 425-
439, 1990.
15.
M.A. Biot, General theory of three-dimensional consolidation, J. App. Physics,
vol. 12, pp. 155-164, 1941.
16.
T. Nagashima, T. Shirakuni, and S.I. Rapoport, A two-dimensional, finite element
analysis of vasogenic brain edema, Neurol. Med. Chir., vol. 30, pp. 1-9, 1990.
17.
T. Nagashima, N. Tamaki, M. Takada, and Y. Tada, Formation and resolution of
brain edema associated with brain tumors. A comprehensive theoretical model
and clinical analysis, Acta Neurochirurgica, Suppl., vol. 60, pp. 165-167, 1994.
18.
A. Pena, M.D. Bolton, H. Whitehouse, and J.D. Pickard, Effects of brain ventri-
cular shape on periventricular biomechanics: a finite-element analysis, Neurosur-
gery, vol. 45, no. 1, pp. 107-118, 1999.
19.
K.D. Paulsen, M.I. Miga, F.E. Kennedy, P.J. Hoopes, A. Hartov, and D.W. Roberts,
A computational model for tracking subsurface tissue deformation during ster-
eotactic neurosurgery, IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 213-225, 1999.
20.
O. Skrinjar, D. Spencer, and J. Duncan, Brain shift modeling for use in neurosur-
gery, Lecture Notes in Computer Science: Medical Image Computing and Computer-
Assisted Intervention —MICCAI'98, vol. 1496, pp. 1067-1074, 1998.
Search WWH ::




Custom Search