Geoscience Reference
In-Depth Information
Kurihara, H. (2008). Effects of CO 2 -driven ocean acidii ca-
tion on the early developmental stages of invertebrates.
Marine Ecology Progress Series , 373 , 275-84.
Langdon, C. and Atkinson, M.J. (2005). Effect of elevated
p CO 2 on photosynthesis and calcii cation of corals and
interactions with seasonal change in temperature/irra-
diance and nutrient enrichment. Journal of Geophysical
Research , 110 , C09S07, doi:10.1029/2004JC002576.
Langdon, C., Takahashi, T., Sweeney, C. et al . (2000). Effect
of calcium carbonate saturation state on the calcii cation
rate of an experimental coral reef. Global Biogeochemical
Cycles , 14 , 639-54.
Langdon, C., Broecker, W.S., Hammond, D.E. et al . (2003).
Effect of elevated CO 2 on the community metabolism of
an experimental coral reef. Global Biogeochemical Cycles ,
17 , 1011, doi:10.1029/2002GB001941.
Langdon, C.R., Gattuso, J.-P., and Andersson, A.J. (2010).
Measurements of calcii cation and dissolution of
benthic organisms and communities. In: U. Riebesell,
V.J. Fabry, L. Hansson, and J.-P. Gattuso (eds), Guide to
best practices in ocean acidii cation research and data report-
ing , pp. 213-34. Publications Ofi ce of the European
Union, Luxembourg.
Leclercq, N., Gattuso, J.-P., and Jaubert, J. (2000). CO 2 par-
tial pressure controls the calcii cation rate of a coral
community. Global Change Biology , 6 , 329-34.
Leclercq, N., Gattuso, J.-P., and Jaubert, J. (2002). Primary
production, respiration, and calcii cation of a coral reef
mesocosm under increased CO 2 partial pressure.
Limnology and Oceanography , 47 , 558-64.
Le Quéré, C., Raupach, M.R., Canadell, J.G. et al . (2009).
Trends in the sources and sinks of carbon dioxide. Nature
Geoscience , 2 , 831-6.
Mackenzie, F.T., and Lerman, A. (2006). Carbon in the geo-
biosphere: earth's outer shell . Springer, Dordrecht.
Mackenzie, F.T., Bischoff, W.D., Bishop, F.C., Loijens, M.,
Schoonmaker, J., and Wollast, R. (1983). Magnesian cal-
cites: low temperature occurrence, solubility and solid-
solution behavior. In: R.J. Reeder (ed.), Carbonates:
mineralogy and chemistry. Reviews in Mineralogy, Vol. 11,
pp. 97-143. Mineralogical Society of America,
Washington, DC.
Mackenzie, F.T., Andersson, A.J., Lerman, A., and Ver, L.M.
(2005). Boundary exchanges in the global coastal mar-
gin: implications for the organic and inorganic carbon
cycles. In: A.R. Robinson, J. McCarthy, and B.J. Rothschild
(eds), The sea , Vol. 13, pp. 193-225. Harvard University
Press, Cambridge, MA.
Maier, C., Hegeman, J., Weinbauer, M.G., and Gattuso, J.-P.
(2009). Calcii cation of the cold-water coral Lophelia per-
tusa under ambient and reduced pH. Biogeosciences , 6 ,
1671-80.
Manzello, D.P. (2010). Coral growth with thermal stress
and ocean acidii cation: lessons from the eastern tropi-
cal Pacii c. Coral Reefs , 29 , 749-58.
Manzello, D.P., Kleypas, J.A., Budd, D.A., Eakin, C.M.,
Glynn, P.W., and Langdon, C. (2008). Poorly cemented
coral reefs of the eastern tropical Pacii c: possible
insights into reef development in a high-CO 2 world.
Proceedings of the National Academy of Sciences USA , 105 ,
10450-5.
Martin, S., Rodolfo-Metalpa, R., Ransome, E. et al . (2008).
Effects of naturally acidii ed seawater on seagrass cal-
careous epibionts. Biology Letters , 4 , 689-92.
Marubini, F., Ferrier-Pagès, C., and Cuif, J.-P. (2003).
Suppression of skeletal growth in scleractinian corals by
decreasing ambient carbonate-ion concentration: a
cross-family comparison. Proceedings of the Royal Society
B: Biological Sciences , 270 , 179-84.
Milliman, J.D. (1993). Production and accumulation of cal-
cium carbonate in the ocean: budget of a nonsteady
state. Global Biogeochemical Cycles , 7 , 927-57.
Milliman, J.D. and Droxler, A.W. (1996). Neritic and
pelagic carbonate sedimentation in the marine environ-
ment: ignorance is not bliss. Geologische Rundschau , 85 ,
496-504.
Morse, J.W. and Mackenzie, F.T. (1990). Geochemistry of
sedimentary carbonates . Elsevier Science, Amsterdam.
Morse, J.W., Andersson, A.J., and Mackenzie, F.T. (2006).
Initial responses of carbonate-rich shelf sediments to
rising atmospheric p CO 2 and ocean acidii cation: role of
high Mg-calcites. Geochimica et Cosmochimica Acta , 70 ,
5814-30.
Nelson, W.A. (2009). Calcii ed macroalgae—critical to
coastal ecosystems and vulnerable to change: a review.
Marine and Freshwater Research , 60 , 787-801.
Ohde, S. and van Woesik, R. (1999). Carbon dioxide l ux
and metabolic processes of a coral reef, Okinawa.
Bulletin of Marine Science , 65 , 559-76.
Olafsson, J., Olafsdottir, S.R., Benoit-Cattin, A., Danielsen, M.,
Arnarson, T.S., and Takahashi, T. (2009). Rate of Iceland
Sea acidii cation from time series measurements.
Biogeosciences , 6 , 2661-8.
Opdyke, B.N. and Walker, J.C.G. (1992). Return of the
coral reef hypothesis: basin to shelf partitioning of
CaCO 3 and its effect on atmospheric CO 2 . Geology , 20 ,
733-6.
Orr, J.C., Fabry, V.J., Aumont, O. et al . (2005). Anthropogenic
ocean acidii cation over the twenty-i rst century and its
impacts on calcifying organisms. Nature , 437 , 681-6.
Oschlies, A., Schulz, K.G., Riebesell, U., and Schmittner, A.
(2008). Simulated 21st century's increase in oceanic suboxia
by CO 2 -enhanced biotic carbon export. Global Biogeochemical
Cycles , 22 , GB4008, doi:10.1029/2007GB003147.
Search WWH ::




Custom Search