Geoscience Reference
In-Depth Information
Smith, S.V. (1971). Budget of calcium carbonate, Southern
California continental borderland. Journal of Sedimentary
Petrology , 41 , 798-808.
Stanley, S.M., Ries, J.B., and Hardie, L.A. (2010). Increased
production of calcite and slower growth for the major
sediment-producing alga Halimeda as the Mg/Ca ratio
of seawater is lowered to a 'calcite sea' level. Journal of
Sedimentary Research , 80 , 6-16.
Steinacher, M., Joos, F., Frölicher, T.L., Plattner, G.-K., and
Doney, S.C. (2009). Imminent ocean acidii cation pro-
jected with the NCAR global coupled carbon cycle-
climate model. Biogeosciences , 6 , 515-33.
Stramma, L., Johnson, G.C., Sprintall, J., and Mohrholz, V.
(2008). Expanding oxygen-minimum zones in the tropi-
cal oceans. Science , 320 , 655-8.
Tanzil, J.T.I., Brown, B. E., Tudhope, A.W., and Dunne, R.P.
(2009). Decline in skeletal growth of the coral Porites
lutea from the Andaman Sea, South Thailand between
1984 and 2005. Coral Reefs , 28 , 519-28.
Tittensor, D.P., Baco-Taylor, A.R., Brewin, P. et al . (2009).
Predicting global habitat suitability for stony corals on
seamounts. Journal of Biogeography , 36 , 1111-28.
Tribollet, A. (2008). The boring microflora in modern coral
reef ecosystems: a review of its roles. In: M. Wisshak and
L. Tapanila (eds), Current developments in bioerosion , pp.
67-94. Springer-Verlag, Berlin.
Tribollet, A., Godinot, C., Atkinson, M., and Langdon, C.
(2009). Effects of elevated p CO 2 on dissolution of coral car-
bonates by microbial euendoliths. Global Biogeochemical
Cycles , 23 , GB3008, doi:10.1029/2008GB003286.
Vecsei, A. and Berger, W.H. (2004). Increase of atmospheric
CO 2 during deglaciation: constraints on the coral reef
hypothesis from patterns of deposition. Global Biogeochemical
Cycles , 18 , GB1035, doi:10.1029/2003GB002147.
Walter, L.M. and Morse, J.W. (1984). Reactive surface area
of skeletal carbonate during dissolution: effect of grain
size. Journal of Sedimentary Petrology , 54 , 1081-90.
Wollast, R. (1994). The relative importance of bioreminer-
alization and dissolution of CaCO 3 in the global carbon
cycle. In: F. Doumenge, D. Allemand, and A. Toulemont
(eds), Past and present biomineralization processes: consid-
erations about the carbonate cycle , pp. 13-34. Musée
Océanographique, Monaco.
Wood, H.L., Spicer, J.I., and Widdicombe, S. (2008). Ocean
acidii cation may increase calcii cation rates, but at a
cost. Proceedings of the Royal Society B: Biological Sciences ,
275 , 1767-73.
Yates, K.K. and Halley, R.B. (2006). CO 3 2- concentration
and p CO 2 thresholds for calcii cation and dissolution
on the Molokai reef flat, Hawaii. Biogeosciences , 3 , 357-69.
Palacios, S.L. and Zimmerman, R.C. (2007). Response of
eelgrass Zostera marina to CO 2 enrichment: possible
impacts of climate change and potential for remediation
of coastal habitats. Marine Ecology Progress Series , 344 ,
1-13.
Plummer, L.N. and Mackenzie, F.T. (1974). Predicting min-
eral solubility from rate data: application to the dissolu-
tion of magnesian calcites. American Journal of Science ,
274 , 61-83.
Raven, J.A. (1997). Inorganic carbon acquisition by
marine autotrophs. Advances of Botanical Research , 27 ,
85-209.
Reynaud, S., Leclercq, N., Romaine-Lioud, S., Ferrier-
Pagès, C., Jaubert, J., and Gattuso, J.-P. (2003). Interacting
effects of CO 2 partial pressure and temperature on pho-
tosynthesis and calcii cation in a scleractinian coral.
Global Change Biology , 9 , 1660-8.
Riebesell, U., Schulz, K.G., Bellerby, R.G.J. et al . (2007).
Enhanced biological carbon consumption in a high CO 2
ocean. Nature , 450 , 545-8.
Ries, J.B. (2010). Review: geological and experimental evi-
dence for secular variation in seawater Mg/Ca (calcite-
aragonite seas) and its effects on marine biological
calcii cation. Biogeosciences , 7 , 2795-849.
Ries, J.B., Cohen, A.L., and McCorkle, D.C. (2009). Marine
calcii ers exhibit mixed responses to CO 2 -induced ocean
acidii cation. Geology , 37 , 1131-4.
Roberts, J.M., Wheeler, A.J., and Freiwald, A. (2006). Reefs
of the deep: the biology and geology of cold-water coral
ecosystems. Science , 312 , 543-7.
Rodolfo-Metalpa, R., Lombardi, C., Cocito, S., Hall-Spencer,
J.M., and Gambi, M.C. (2010). Effects of ocean acidii ca-
tion and high temperatures on the bryozoan Myriapora
truncata at natural CO 2 vents. Marine Ecology ,
31 ,
447-56.
Schneider, K. and Erez, J. (2006). The effect of carbonate
chemistry on calcii cation and photosynthesis in the
hermatypic coral Acropora eurystoma .
Limnology and
Oceanography , 51 , 1284-93.
Silverman, J., Lazar, B., and Erez, J. (2007). Effect of aragonite
saturation, temperature, and nutrients on the community
calcii cation rate of a coral reef. Journal of Geophysical
Research , 112 , C05004, doi:10.1029/2006JC003770.
Silverman, J., Lazar, B., Cao, L., Caldeira, K., and Erez, J.
(2009). Coral reefs may start dissolving when atmos-
pheric CO 2 doubles. Geophysical Research Letters , 36 ,
L05606, doi:10.1029/2008GL036282.
Smith, A.D. and Roth, A.A. (1979). Effect of carbon dioxide
concentration on calcii cation in the red coralline alga
Bossiella orbigniana . Marine Biology , 52 , 217-25.
Search WWH ::




Custom Search