Geoscience Reference
In-Depth Information
IMS101: physiological responses. Plant Physiology , 154 ,
334-45.
Landry, M.R., Barber, R.T., Bidigare, R.R. et al. (1997). Iron
and grazing constraints on primary production in the
central equatorial Pacii c: an EqPac synthesis. Limnology
and Oceanography , 42 , 405-18.
Langer, G., Geisen, M., Baumann, K. et al. (2006). Species-
specii c responses of calcifying algae to changing sea-
water carbonate chemistry. Geochemistry, Geophysics,
Geosystems , 7 , Q09006, doi:10.1029/2005GC001227.
Langer, G., Nehrke, G., Probert, I., Ly, J., and Ziveri, P.
(2009). Strainspecii c responses of Emiliania huxleyi to
changing seawater carbonate chemistry. Biogeosciences ,
6 , 2637-46.
Lassiter, A.M., Wilkerson, F.P., Dugdale, R.C., and Hogue,
V.E. (2006). Phytoplankton assemblages in the CoOP-
WEST coastal upwelling area. Deep Sea Research Part II:
Topical Studies in Oceanography , 53 , 3063-77.
Legrand, M., Fenietsaigne, C., Saltzman, E.S., Germain, C.,
Barkov, N.I., and Petrov, V.N. (1991). Ice-core record of
oceanic emissions of dimethylsuli de during the last cli-
mate cycle. Nature , 350 , 144-6.
Leonardos, N. and Geider, R.J. (2005). Elevated atmos-
pheric CO 2 increases organic carbon i xation by Emiliania
huxleyi (Haptophyta) under nutrient-limited, high-light
conditions. Journal of Phycology , 41 , 1196-203.
Levitan, O., Rosenberg, G., Setlik, I. et al. (2007). Elevated
CO 2 enhances nitrogen i xation and growth in the
marine cyanobacterium Trichodesmium . Global Change
Biology , 13 , 531-8.
Levitan, O., Kranz, S.A., Spungin, D., Prášil, O., Rost, B., and
Berman-Frank, I. (2010). Combined effects of CO 2 and
light on the N 2 -i xing cyanobacterium Trichodesmium
IMS101: a mechanistic view. Plant Physiology , 154 , 346-56.
Lombard, F., da Rocha, R.E., Bijma, J., and Gattuso, J.-P.
(2010). Effect of carbonate ion concentration and irradi-
ance on calcii cation in planktonic foraminifera.
Biogeosciences , 7 , 247-55.
Longhurst, A. (1998). Ecological geography of the sea , 398 pp.
Academic Press, San Diego, CA.
Mackinder, L., Wheeler, G., Schroeder, D., Riebesell, U.,
and Brownlee, C. (2010). Molecular mechanisms under-
lying calcii cation in coccolithophores. Geomicrobiology ,
27 , 585-95.
Maldonado, M.T. and Price, N.M. (2001). Reduction and
transport of organically bound iron by Thalassiosira oce-
anica (Bacillariophyceae). Journal of Phycology ,
Martin, J.H. and Fitzwater, S.E. (1988). Iron dei ciency lim-
its phytoplankton growth in the north-east Pacii c sub-
arctic. Nature , 331 , 341-3.
Millero, F.J., Woosley, R., DiTrolio, B. and Waters, J. (2009).
Effect of ocean acidii cation on the speciation of metals
in seawater. Oceanography , 22 , 72-85.
Milligan, A.J., Varela, D.E., Brzezinski, M.A., and Morel,
F.M.M. (2004). Dynamics of silicon metabolism and sili-
con isotopic discrimination in a marine diatom as a
function of p CO 2 .
Limnology and Oceanography ,
49 ,
322-9.
Milliman, J.D. (1993). Production and accumulation of cal-
cium carbonate in the ocean: budget of a nonsteady
state. Global Biogeochemical Cycles , 7 , 927-57.
Müller, M.N., Schulz, K.G., and Riebesell, U. (2010). Effects
of long-term high CO 2 exposure on two species of coc-
colithophores. Biogeosciences , 7 , 1109-16.
Oschlies, A., Schulz, K.G., Riebesell, U., and Schmittner, A.
(2008). Simulated 21st century's increase in oceanic
suboxia by CO 2 -enhanced biotic carbon export.
Global
Biogeochemical
Cycles ,
22 ,
GB4008,
doi:
10.1029/2007GB003147.
Pabi, S., van Dijken, G.L., and Arrigo, K.R. (2008).
Primary production in the Arctic Ocean, 1998-2006.
Journal
of
Geophysical
Research ,
113 ,
C08005,
doi:10.1029/2007JC004578.
Passow, U. (2004). Switching perspectives: do mineral
l uxes determine particulate organic carbon l uxes or vice
versa? Geochemistry, Geophysics, Geosystems , 5 , 1-5, doi:
10.1029/2003GC000670.
Raven, J.A. and Johnston, A.M. (1991). Mechanisms of
inorganic-carbon acquisition in marine phytoplankton
and their implications for the use of other resources.
Limnology and Oceanography , 36 , 1701-14.
Rickaby, R.E.M., Henderiks, J., and Young, J.N. (2010).
Perturbing phytoplankton: response and isotopic
fractionation with changing carbonate chemistry in
two coccolithophore species. Climate of the Past ,
6 ,
771-85.
Riebesell, U., Wolf-Gladrow, D.A., and Smetacek, V. (1993).
Carbon dioxide limitation of marine phytoplankton
growth rates. Nature , 361 , 249-51.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe,
R.E., and Morel, F.M.M. (2000). Reduced calcii cation in
marine plankton in response to increased atmospheric
CO 2 . Nature , 407 , 634-7.
Riebesell, U., Schulz, K.G., Bellerby, R.G.J., et al. (2007).
Enhanced biological carbon consumption in a high CO 2
ocean. Nature , 450 , 545-9.
Riebesell, U., Bellerby, R.G.J., Engel, A. et al. (2008a).
Comment on 'Phytoplankton calcii cation in a high-CO 2
world'. Science , 322 , 1466b.
37 ,
298-310.
Margalef, R. (1958). Temporal succession and spatial het-
erogeneity in phytoplankton. In: A.A. Buzzato-Traverso
(ed.), Perspectives in marine biology , pp. 323-49. University
of California Press, Berkeley.
Search WWH ::




Custom Search