Geoscience Reference
In-Depth Information
Feng, Y., Warner, M., Zhang, Y. et al. (2008). Interactive
effects of increased p CO 2 , temperature and irradiance
on the marine coccolithophore Emiliania huxleyi
(Prymnesiophyceae). European Journal of Phycology , 43 ,
87-98.
Feng, Y., Hare, C.E., Leblanc, K. et al. (2009). The effects of
increased p CO 2 and temperature on the North Atlantic
spring bloom: I. phytoplankton community and biogeo-
chemical response. Marine Ecology Progress Series , 388 ,
13-25.
Feng, Y., Hare, C.E., Rose, J.M. et al. (2010). Interactive
effects of iron, irradiance and CO 2 on Ross Sea phyto-
plankton. Deep-Sea Research Part I: Oceanographic Research
Papers , 57 , 368-83.
Fu, F.-X., Mulholland, M.R., Garcia, N.S. et al. (2008a).
Interactions between changing p CO 2 , N 2 i xation, and Fe
limitation in the marine unicellular cyanobacterium
Crocosphaera . Limnology and Oceanography , 53 , 2472-84.
Fu, F., Zhang, Y., Warner, M.E., Feng, Y., and Hutchins,
D.A. (2008b). A comparison of future increased CO 2 and
temperature effects on sympatric Heterosigma akashiwo
and Prorocentrum minimum . Harmful Algae , 7 , 76-90.
Gao K., Ruan Z., Villafane V.E., Gattuso J.-P., and Helbling,
W. (2009). Ocean acidii cation exacerbates the effect of
UV radiation on the calcifying phytoplankter Emiliania
huxleyi . Limnology and Oceanography , 54 , 1855-62.
Gervais, F. and Riebesell, U. (2001). Effect of phosphorus
limitation on elemental composition and stable car-
bon isotope fractionation in a marine diatom growing
under different CO 2 concentrations. Limnology and
Oceanography , 46 , 497-504.
Giordano, M., Beardall, J., and Raven, J.A. (2005). CO 2 con-
centrating mechanisms in algae: mechanisms, environ-
mental modulation, and evolution. Annual Review of
Plant Biology , 56 , 99-131.
del Giorgio, P.A. and Cole, J.J. (1998). Bacterial growth efi -
ciency in natural aquatic systems. Annual Review of
Ecology and Systematics , 29 , 503-41.
Glibert, P.M. (1982). Regional studies of daily, seasonal
and size fraction variability in ammonium reminerali-
zation. Marine Biology , 70 , 209-22.
Gruber, N. and Galloway, J.N. (2008). An Earth-system
perspective of the global nitrogen cycle. Nature , 451 ,
293-6.
Gruber, N. and Sarmiento, J.L. (2002). Large-scale biogeo-
chemical/physical interactions in elemental cycles. In:
A.R. Robinson, J.J. McCarthy, and B.J. Rothschild (eds),
The sea: biological-physical interactions in the oceans , pp.
337-99. John Wiley and Sons, New York.
Hansell, D.A. and Carlson, C.A. (2002). Biogeochemistry of
marine dissolved organic matter , 745 pp. Academic Press,
New York.
Hare, C.E., Leblanc, K., DiTullio, G.R. et al. (2007).
Consequences of increased temperature and CO 2 for
phytoplankton community structure in the Bering Sea.
Marine Ecology Progress Series , 352 , 9-16.
Hein, M. and Sand-Jensen, K. (1997). CO 2 increases oce-
anic primary production. Nature , 388 , 526-7.
Heinze, C., Maier-Reimer, E. and Winn, K. (1991). Glacial
p CO 2 reduction by the world ocean: experiments with
the Hamburg carbon cycle model. Paleoceanography , 6 ,
395-430.
Hinga, K.R. (1992). Co-occurrence of dinol agellate blooms
and high pH in marine enclosures. Marine Ecology
Progress Series , 86 , 181-7.
Hinga, K.R. (2002). Effects of pH on coastal marine
phytoplankton.
Marine Ecology Progress Series ,
238 ,
281-300.
Hutchins, D.A., Fu, F.-X., Zhang, Y. et al. (2007). CO 2 con-
trol of Trichodesmium N 2 i xation, photosynthesis, growth
rates, and elemental ratios: implications for past, present
and future ocean biogeochemistry. Limnology and
Oceanography , 52 , 1293-304.
Hutchins, D.A., Mulholland, M.R., and Fu, F. (2009).
Nutrient cycles and marine microbes in a CO 2 -enriched
ocean. Oceanography , 22 , 128-45.
Iglesias-Rodríguez, M.D., Schoi eld, O.M., Batley, J.,
Medlin, L.K., and Hayes, P.K. (2006). Intraspecii c gene-
tic diversity in the marine coccolithophore Emiliania
huxleyi (Prymnesiophyceae): the use of microsatellite
analysis in marine phytoplankton population studies.
Journal of Phycology , 42 , 526-36.
Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E.M.
et al. (2008). Phytoplankton calcii cation in a high-CO 2
world. Science , 320 , 336-40.
Joint, I., Doney, S.C., and Karl, D.M. (2011). Will ocean
acidii cation affect marine microbes? The ISME Journal ,
5 , 1-7.
Kim, J.-M., Lee, K., Shin, K. et al. (2006). The effect of sea-
water CO 2 concentration on growth of a natural phyto-
plankton assemblage in a controlled mesocosm
experiment. Limnology and Oceanography , 51 , 1629-36.
Klaas, C. and Archer, D.A. (2002). Association of sink-
ing organic matter with various types of mineral
ballast in the deep sea: implications for the rain
ratio.
Global
Biogeochemical
Cycles,
16 ,
1116,
doi:10.1029/2001GB001765.
Kranz, S.A., Sültemeyer, D., Richter, K.U., and Rost, B.
(2009). Carbon acquisition by Trichodesmium : the effect
of p CO 2 and diurnal changes. Limnology and
Oceanography , 54 , 548-59.
Kranz, S.A., Levitan, O., Richter, K.-U., Prášil, O., Berman-
Frank, I., and Rost, B. (2010). Combined effects of CO 2
and light on the N 2 -i xing cyanobacterium Trichodesmium
Search WWH ::




Custom Search