Information Technology Reference
In-Depth Information
48. A. G. Umnov, Y. Shiratori, and H. Hiraoka. Giant field amplification in tungsten
nanowires. Applied Physics A: Materials Science and Processing, 77: pp 159-161, 2003.
49. J. L. Kwo, M. Yokoyama, W. C. Wang, F. Y. Chuang, and I. N. Lin. Characteristics of
flat panel display using carbon nanotubes as electron emitters. Diamond and Related
Materials, 9: pp 1270-1274, 2000.
50. S. G. Yu, S. Jin, W. Yi, J. Kang, T. Jeong, Y. Choi, J. Lee, J. Heo, N. S. Lee, and J. B.
Yoo. Undergate-type Triode Carbon Nanotube Field Emission Display with a
Microchannel Plate. Japanese Journal of Applied Physics, 40: pp 6088-6091, 2001.
51. K. Ioakeimidi, R. F. Leheny, S. Gradinaru, P. R. Bolton, R. Aldana, K. Ma, J. E.
Clendenin, J. S. Harris, and R.F.W. Pease. Photoelectronic analog-to-digital conver-
sion: sampling and quantizing at 100Gs/s. IEEE Transactions on Microwave Theory
and Techniques, 53: pp 336-342, 2005.
52. A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayyan. Miniaturized gas
ionization sensors using carbon nanotubes. Nature, 424: pp 171-174, 2003.
53. C. S. Rout, A. Govindaraj, and C. N. R. Rao. High-sensitivity hydrocarbon sensors
based on tungsten oxide nanowires. Journal of Materials Chemistry, 16: pp 3936-3941,
2006.
54. S. Sotiropoulou and N. A. Chaniotakis. Carbon nanotube array-based biosensor.
Analytical and Bioanalytical Chemistry, 375: pp 103-105, 2003.
55. K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker. Enzyme-coated
carbon nanotubes as single-molecule biosensors. Nano Letters, 3: pp 727-730, 2003.
56. G. Zheng, F. Patolsky, Y. I. Cui, W. U. Wang, and C. M. Lieber. Multiplexed electrical
detection of cancer markers with nanowire sensor arrays. Nature Biotechnology, 23:
pp 1294-1301, 2005.
57. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai.
Nanotube molecular wires as chemical sensors. Science, 287: pp 622-625, 2000.
58. X. Y. Xue, Y. J. Chen, Y. G. Wang, and T. H. Wang. Synthesis and ethanol sensing
properties of ZnSnO nanowires. Applied Physics Letters, 86: p 233101, 2005.
59. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks,
G. G. Wallace, A. Mazzoldi, D. De Rossi, and A. G. Rinzler. Carbon nanotube
actuators. Science, 284: pp 1340-1344, 1999.
60. T. Mirfakhrai, J. Oh, M. Kozlov, E. C. W. Fok, M. Zhang, S. Fang, R. H. Baughman,
and J. D. W. Madden. Electrochemical actuation of carbon nanotube yarns. Smart
Materials and Structures, 16: pp S243-S249, 2007.
61. M. Ieong, K. W. Guarini, V. Chan, K. Bernstein, R. Joshi, J. Kedzierski, and
W. Haensch. Three-dimensional CMOS devices and integrated circuits, Custom
Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003: pp 207-213, 2003.
62. A. Raychowdhury and K. Roy. Modeling of metallic carbon-nanotube interconnects
for circuit simulations and a comparison with Cu interconnects for scaled technologies.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25: pp 58-65, 2006.
63. A. Nieuwoudt and Y. Massoud. Understanding the impact of inductance in carbon
nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE
Transactions on Nanotechnology, 5: pp 758-765, 2006.
 
Search WWH ::




Custom Search