Information Technology Reference
In-Depth Information
31. D. L. John and D. L. Pulfrey. Switching-speed calculations for Schottky-barrier carbon
nanotube field-effect transistors. Journal of Vacuum Science and Technology A:
Vacuum, Surfaces, and Films, 24: p 708, 2006.
32. L. C. Castro and D. L. Pulfrey. Extrapolated fmax for carbon nanotube field-effect
transistors. Nanotechnology, 17: pp 300-304, 2006.
33. N. Mason, M. J. Biercuk, and C. M. Marcus. Local gate control of a carbon nanotube
double quantum dot. Science (AAAS), 303: pp 655-658, 2004.
34. M. T. Woodside and P. L. McEuen. Scanned Probe Imaging of Single-Electron Charge
States in Nanotube Quantum Dots. Science, 296: pp 1098-1101, 2002.
35. S. Peng and K. Cho. Nano electro mechanics of semiconducting carbon nanotube.
Journal of Applied Mechanics (Transactions of the ASME), 69: pp 451-453, 2001.
36. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker. Carbon
Nanotube Single-Electron Transistors at Room Temperature. Science, 293: pp 76-79,
July 2001.
37. B. Shan, G. W. Lakatos, S. Peng, and K. Cho. First-principles study of band-gap
change in deformed nanotubes. Applied Physics Letters, 87: p 173109, 2005.
38. A. Nojeh, G. W. Lakatos, S. Peng, K. Cho, and R. F. W. Pease. A carbon nanotube
cross structure as a nanoscale quantum device. Nano Letters, 3: pp 1187-1190, 2003.
39. L. Vitali, M. Burghard, P. Wahl, M. A. Schneider, and K. Kern. Local pressure-
induced metallization of a semiconducting carbon nanotube in a crossed junction.
Physical Review Letters, 96: p 86804, 2006.
40. K. A. Dean and B. R. Chalamala. Current saturation mechanisms in carbon nanotube
field emitters. Applied Physics Letters, 76: pp 375-377, 2000.
41. N. de Jonge, M. Allioux, J. T. Oostveen, K. B. K. Teo, and W. I. Milne. Optical
performance of carbon-nanotube electron sources. Physical Review Letters, 94:
pp 186807-186804, 2005.
42. N. de Jonge and J-M Bonard. Carbon nanotube electron sources and applications.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 362: pp 2239-2266, 2004.
43. T. Fujieda, K. Hidaka, M. Hayashibara, T. Kamino, H. Matsumoto, Y. Ose, H. Abe,
T. Shimizu, and H. Tokumoto. In situ observation of field emissions from an individual
carbon nanotube by Lorenz microscopy. Applied Physics Letters, 85: pp 5739-5741,
2004.
44. P. G. Collins and A. Zettl. Unique characteristics of cold cathode carbon-nanotube-
matrix field emitters. Physical Review B, 55: 1997 p 9391, 1997.
45. A. Nojeh, W. K. Wong, E. Yieh, R. F. Pease, and H. Dai. Electron beam stimulated
field-emission from single-walled carbon nanotubes. Journal of Vacuum Science and
Technology B: Microelectronics and Nanometer Structures, 22: pp 3124-3127, 2004.
46. A. I. Klimovskaya, Y. M. Litvin, Y. Y. Moklyak, A. A. Dadykin, T. I. Kamins, and
S. Sharma. Field-electron emission at 300K in self-assembled arrays of silicon
nanowires. Applied Physics Letters, 89: pp 093122-093123, 2006.
47. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee. Field emission from
well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters,
81: p 3648, Nov 2002.
 
Search WWH ::




Custom Search