Environmental Engineering Reference
In-Depth Information
15
15
10
10
1
10.11
°
C
phase
7.75
°
C
2
change
5
5
3
4
3.92 ° C
1.61 ° C
Steady state
(frozen)
0
0
Steady state
(unfrozen)
1
1.58 ° C
3.47 ° C
-6.23
2
3
4
phase
C
-8.13 ° C
°
change
0
4
8
12
16
20
24
Time (h)
(a)
28
32
36
40
44
48
Thermistor
140
140
4
3
3 mm
V T ul = 62.6 ° C/m
Pyrex disk
V T uf = 79.1 ° C/m
120
120
100
Time = 22 h
frozen state
100
V T = 48.8 ° C/m
80
80
Granular
sample
7 mm
60
60
V T = 35.9 ° C/m
Time = 46 h
unfrozen state
40
40
2
3 mm
20
0
V T n = 64.9
C/m
V T n = 80.8 ° C/m
Pyrex disk
°
0
0
2
4
6
8
10
12
(b)
Temperature ( ° C)
(c)
Figure 10.15 Typical data obtained during measurement of thermal conductivity of granular soil
(C ote and Konrad, 2005): (a) evolution of temperature with time measured using thermisters;
(b) specimen layout; (c) temperature distribution at frozen steady states and unfrozen steady
states.
4.5
4.5
Dolostone
Gabbro
GraniteA
GraniteB
Limestone
Quartzite
Sandstone
Syenite
Dolostone
Gabbro
GraniteA
GraniteB
Limestone
Quartzite
Sandstone
Syenite
4.0
4.0
3.5
3.5
3.0
3.0
2.5
2.5
2.0
2.0
1.5
1.5
1.0
1.0
0.5
0.5
0.0
0.0
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
w , %
w , %
Figure 10.16 Thermal conductivity of unfrozen base course
materials as function of water content (data compiled by Cot´eand
Konrad, 2005).
Figure 10.17 Thermal conductivity of frozen base course mate-
rials as function of water content (data compiled by C ot´eand
Konrad, 2005).
 
Search WWH ::




Custom Search