Biomedical Engineering Reference
In-Depth Information
121. Stupack, D.G., Cheresh, D.A.: Integrins and angiogenesis. Curr. Top. Dev. Biol. 64,
207-238 (2004)
122. Ingber, D., Folkman, J.: How does extracellular matrix control capillary morphogenesis?
Cell 58, 803-805 (1989)
123. Deroanne, C.F., Lapiere, C.M., Nusgens, B.V.: In vitro tubulogenesis of endothelial cells by
relaxation
of
the
coupling
extracellular
matrix-cytoskeleton.
Cardiovasc.
Res.
49(3),
647-658 (2001)
124. Sieminski, A.L., Hebbel, R.P., Gooch, K.J.: The relative magnitudes of endothelial force
generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell Res.
297(2), 574-584 (2004)
125. Vailhe, B., Lecomte, M., Wiernsperger, N., Tranqui, L.: The formation of tubular structures
by endothelial cells is under the control of fibrinolysis and mechanical factors. Angiogenesis
2(4), 331-344 (1998)
126. Kniazeva, E., Putnam, A.J.: Endothelial cell traction and ECM density influence both
capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297(1),
C179-C187 (2009)
127. Urech, L., Bittermann, A.G., Hubbell, J.A., Hall, H.: Mechanical properties, proteolytic
degradability and biological modifications affect angiogenic process extension into native
and modified fibrin matrices in vitro. Biomaterials 26(12), 1369-1379 (2005)
128. Fischer, R.S., Gardel, M., Ma, X., Adelstein, R.S., Waterman, C.M.: Local cortical tension
by myosin II guides 3D endothelial cell branching. Current Biol.: CB 19(3), 260-265 (2009)
129. Mammoto, A., Connor, K.M., Mammoto, T., Yung, C.W., Huh, D., Aderman, C.M.,
Mostoslavsky,
G.,
Smith,
L.E.H.,
Ingber,
D.E.:
A
mechanosensitive
transcriptional
mechanism that controls angiogenesis. Nature 457, 1103-1108 (2009)
130. Califano, J.P., Reinhart-King, C.A.: The effects of substrate elasticity on endothelial cell
network formation and traction force generation. Conf. Proc. IEEE Eng. Med. Biol. Soc.
2009, 3343-3345 (2009)
131. Kniazeva, E., Putnam, A.: Endothelial cell traction and ECM density influence both
capillary morphogenesis and maintenance in 3-D. Am. J. Physiol. Cell Physiol. 297(1),
C179-C187 (2009)
132. Lee, P.F., Yeh, A.T., Bayless, K.J.: Nonlinear optical microscopy reveals invading
endothelial cells anisotropically alter three-dimensional collagen matrices. Exp. Cell Res.
315(3), 396-410 (2009)
133. Krishnan, L., Boying, J., Nguyen, H., Song, H., Weiss, J.: Interaction of angiogenic
microvessels with the extracellular matrix. Am. J. Physiol. Heart Circ. Physiol. 293, H3650-
H3658 (2007)
134. Vailhe, B., Ronot, X., Tracqui, P., Usson, Y., Tranqui, L.: In vitro angiogenesis is
modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin
localization. In Vitro Cell. Dev. Biol. Anim. 33, 763-773 (1997)
135. Vernon, R., Sage, E.: Contraction of fibrillar type I collagen by endothelial cells: a study in
vitro. J. Cell. Biochem. 60, 185-197 (1996)
136. Ghajar, C.M., Blevins, K.S., Hughes, C.C., George, S.C., Putnam, A.J.: Mesenchymal stem
cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix
metalloproteinase upregulation. Tissue Eng. 12(10), 2875-2888 (2006)
137. Kilarski, W.W., Samolov, B., Petersson, L., Kvanta, A., Gerwins, P.: Biomechanical
regulation of blood vessel growth during tissue vascularization. Nat. Med. 15(6), 657-664
(2009)
138. Benest, A.V., Augustin, H.G.: Tension in the vasculature. Nat. Med. 15(6), 608-610 (2009)
139. Gerwins, P., Skoldenberg, E., Claesson-Welsh, L.: Function of fibroblast growth factors and
vascular endothelial growth factors and their receptors in angiogenesis. Crit. Rev. Oncol.
Hematol. 34(3), 185-194 (2000)
140. Spinale, F.G.: Myocardial matrix remodeling and the matrix metalloproteinases: influence
on cardiac form and function. Physiol. Rev. 87(4), 1285-1342 (2007)
Search WWH ::




Custom Search