Biomedical Engineering Reference
In-Depth Information
102. Fernandez,
C.,
Moses,
M.:
Modulation
of
angiogenesis
by
tissue
inhibitor
of
metalloproteinase-4. Biochem. Biophys. Res. Commun. 345, 523-529 (2006)
103. Koskivirta, I., Kassiri, Z., Rahkonen, O., Kiviranta, R., Oudir, G., McKee, T., Kyto, V.,
Saraste, A., Jokinen, E., Liu, P., Vuorio, E., Khokha, R.: Mice with tissue inhibitor of
metalloproteinase 4 (Timp4) delection succumb to induced myocardial infarction but not to
cardiac pressure overload. J. Biol. Chem. 285(32), 24487-24493 (2010)
104. Takahashi, C., Sheng, Z., Horan, T., Kitayama, H., Maki, M., Hitomi, K., Kitaura, Y.,
Takai, S., Sasahara, R., Horimoto, A., Ikawa, Y., Ratzkin, B., Arakawa, T., Noda, M.:
Regulation
of
matrix
metalloproteinase-9
and
inhibition
of
tumor
invasion
by
the
membrane-anchored
glycoprotein
RECK.
Proc.
Natl.
Acad.
Sci.
USA
95(22),
13221-13226 (1998)
105. Oh, J., Takahashi, R., Kondo, S., Mizoguchi, A., Adachi, E., Sasahara, R., Nishimura, S.,
Imamura, Y., Kitayama, H., Alexander, D., Ide, C., Horan, T., Arakawa, T., Yoshida, H.,
Nishikawa, S., Itoh, Y., Seiki, M., Itohara, S., Takahashi, C., Noda, M.: The membrane-
anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and
angiogenesis. Cell 107(6), 789-800 (2001)
106. Egeblad,
M.,
Werb,
Z.:
New
functions
for
the
matrix
metalloproteinases
in
cancer
progression. Nat. Rev. Cancer 2, 161-174 (2002)
107. Thurston, G.: Complementary actions of VEGF and Angiopoietin-1 on blood vessel growth
and leakage. J. Anat. 200(6), 575-580 (2002)
108. Thomas, M., Augustin, H.: The role of the angiopoietins in vascular morphogenesis.
Angiogenesis 12, 125-137 (2009)
109. Stratman, A., Malotte, K., Mahan, R., Davis, M., Davis, G.: Pericyte recruitment during
vasculogenic tube assembly stimulates endothelial basement membrane matrix formation.
Blood 114, 5091-5101 (2009)
110. Stratman, A., Saunders, W., Sacharidou, A., Koh, W., Fisher, K., Zawieja, D., Davis, M.,
Davis, G.: Endothelial cell lumen and vascular guidance tunnel formation requires MT1-
MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114, 237-247
(2009)
111. Stratman, A., Schwindt, A., Malotte, K., Davis, G.: Endothelial-derived PDGF-BB and
HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and
stabilization. Blood 116, 4720-4730 (2010)
112. Greenberg, J., Shields, D., Barillas, S., Acevedo, L., Murphy, E., Huang, J., Scheppke, L.,
Stockmann, C., Johnson, R., Angle, N., Charesh, D.: A role for VEGF as a negative
regulator of pericyte function and vessel maturation. Nature 456(7223), 809-813 (2008)
113. Jain, R.: Normalization of tumor vasculature: an emerging concept in antiangiogenic
therapy. Science 307, 58-62 (2005)
114. Miner, J., Yurchenco, P.: Laminin functions in tissue morphogenesis. Ann. Rev. Cell Dev.
Biol. 20, 255-284 (2004)
115. Davis, G., Stratman, A., Sacharidou, A., Koh, W.: Molecular basis for endothelial lumen
formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int. Rev. Cell
Mol. Biol. 288, 101-165 (2011)
116. Quaegebeur, A., Segura, I., Carmeliet, P.: Pericytes: blood-brain barrier safeguards against
neurodegeneration? Neuron 68(3), 321-323 (2010)
117. Brooks, P.C., Clark, R.A., Cheresh, D.A.: Requirement of vascular integrin alpha v beta 3
for angiogenesis. Science 264(5158), 569-571 (1994)
118. Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G.,
Cheresh, D.A.: Integrin alpha v beta 3 antagonists promote tumor regression by inducing
apoptosis of angiogenic blood vessels. Cell 79(7), 1157-1164 (1994)
119. Kim, S., Bell, K., Mousa, S., Varner, J.: Regulation of angiogenesis in vivo by ligation of
integrin alpha5-beta1 with the central cell-binding domain of fibronectin. Am. J. Pathol.
156, 1345-1362 (2000)
120. Ponce, M., Nomizu, M., Kleinman, H.: An angiogenic laminin site and its antagonist bind
through the alphav-beta3 and alpha5-beta1 integrins. FASEB J. 15, 1389-1397 (2001)
Search WWH ::




Custom Search