Biomedical Engineering Reference
In-Depth Information
100. Huang,
C.P.,
et
al.:
Engineering
microscale
cellular
niches
for
three-dimensional
multicellular co-cultures. Lab. Chip 9, 1740-1748 (2009)
101. Doran, M.R., et al.: A cell migration device that maintains a defined surface with no cellular
damage during wound edge generation. Lab. Chip 9, 2364-2369 (2009)
102. Sudo, R., et al.: Transport-mediated angiogenesis in 3D epithelial co culture. FASEB J.
23(37), 2155-2164 (2009)
103. Mack, P.J.: Biomechanical regulation of endothelium-dependent events critical for adaptive
remodeling. J. Biol. Chem. 284(13), 8412-8420 (2009)
104. Prabhakar, N.R., Fields, R.D., Baker, T., Fletcher, E.C.: Intermittent hypoxia: cell to system.
Am. J. Physiol. Lung Cell Mol. Physiol. 281L, 524-528 (2001)
105. Verbridge, S.S., et al.: Oxygen-controlled three-dimensional cultures to analyze tumor
angiogenesis. Tissue Eng. A 16, 2133-2141 (2010)
106. Truskey, G.A.: Endothelial cell vascular smooth muscle cell co-culture assay for high
throughput screening assays for discovery of anti-angiogenesis agents and other therapeutic
molecules. Int. J. High Throughput Screening 1, 171-181 (2010)
107. Griffith, C.K., et al.: Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng.
11, 257-266 (2005)
108. Chen, A.A., Underhill, G.H., Bhatia, S.N.: Multiplexed, high-throughput analysis of 3D
microtissue suspensions. Integr. Biol. 2, 517-527 (2010)
109. Seaman, M.E., Peirce, S.M., Kelly, K.: Rapid analysis of vessel elements (RAVE): a tool for
studying physiologic, pathologic and tumor angiogenesis. PLoS ONE 6(6), 1-8 (2011)
110. Wood, L.B., Kamm, R.D., Asada, H.H.: A stochastic broadcast feedback approach to
regulating cell population morphology for microfluidic angiogenesis platforms. IEEE Trans.
Biomed. Eng. 56(9), 2299-2303 (2009)
111. Ferrara, N.: Vascular endothelial growth factor: basic science and clinical progress. Endocr.
Rev. 25(4), 581-611 (2004)
112. Metheny-Barlow, L.J., Li, L.Y.: The enigmatic role of angiopoietin-1 in tumor angiogenesis.
Cell Res. 13(5), 309-317 (2003)
113. Nissen, L.J., et al.: Angiogenic factors FGF2 and PDGF-BB synergistically promote murine
tumor neovascularization and metastasis. J Clin Invest. 117(10), 2766-2777 (2007)
114. Li, A., et al.: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix
metalloproteinases production and regulated angiogenesis. J. Immunol. 170(6), 3369-3376 (2003)
115. Deshane, J., et al.: Stromal cell-derived factor 1 promotes angiogenesis via a heme
oxygenase 1- dependent mechanism. JEM 204(3), 605-618 (2007)
116. Ferrari, G., et al.: VEGF, a prosurvival factor, acts in concert with TGF-beta to induce
endothelial cell apoptosis. Proc. Natl. Acad. Sci. U.S.A 103(46), 17260-17265 (2006)
117. Zhang, Y.W., Su, Y., Volpert, O.V., Vande Woude, G.F.: Hepatocyte growth factor/scatter
factor mediates angiogenesis through positive VEGF and negative thrombospondin 1
regulation. Proc. Natl. Acad. U.S.A 100(22), 12718-12723 (2003)
118. O'Reilly, M.S., et al.: Angiostatin: a novel angiogenesis inhibitor that mediates the
suppression of metastases by a lewis lung carcinoma. Cell 79(2), 315-328 (1994)
119. O'Reilly, M.S., et al.: Endostatin; an endogenoud inhibitor of angiogenesis and tumor
growth. Cell 88(2), 277-285 (1997)
120. Volpert, O.V., et al.: Inhibition of angiogenesis by interleukin 4. J. Exp. Med. 188(6),
1039-1046 (1998)
121. Nishimura, Y., et al.: IL-13 attenuates vascular tube formation via JAK2-STAT6 pathway.
Circ. J. 72(3), 469-475 (2008)
122. Bikfalvi, A.: Platelet factor 4: an inhibitor of angiogenesis. Semin. Thromb. Hemost. 30(3),
379-385 (2004)
123. Good, D.J., et al.: A tumor suppressor-dependent inhibitor of angiogenesis is immunologically
and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Aca. Sci.
U.S.A. 87(17), 6624-6628 (1990)
124. Pike, S.E., et al.: Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses
tumor growth. J. Exp. Med. 188(12), 2349-2356 (1998)
Search WWH ::




Custom Search