Biomedical Engineering Reference
In-Depth Information
75. Toepke, M.W., Beebe, D.J.: PDMS absorption of small molecules and consequences in
microfluidic applications. Lab. Chip 6, 1484-1486 (2006)
76. Borenstein, J., et al.: Microfabrication technology for vascularized tissue engineering.
Biomed. Microdevices 4, 167-175 (2002)
77. Shin, M., et al.: Endothelialized networks with a vascular geometry in microfabricated poly
(dimethyl siloxane). Biomed. Microdevices 6, 269-278 (2004)
78. Golden, A.P., Tien, J.: Fabrication of microfluidic hydrogels using molded gelatin as a
sacrificial element. Lab. Chip 7, 720-725 (2007)
79. Raghavan, S., Desai, R.A., Kwon, Y., Mrksich, M., Chen, C.S.: Micropatterned dynamically
adhesive substrates for cell migration. Langmuir 26, 17733-17738 (2010)
80. Chrobak, K.M., Potter, D.R., Tien, J.: Formation of perfused, functional microvascular
tubes in vitro. Microvasc. Res. 71, 185-196 (2006)
81. Price, G.M., et al.: Effect of mechanical factors on the function of engineered humanblood
microvessels in microfluidic collagengels. Biomaterials 31, 6182-6189 (2010)
82. Reinhart-King, C.A., Dembo, M., Hammer, D.A.: Endothelial cell traction forces on RGD-
derivatized polyacrylamide substrata. Langmuir 19(5), 1573-1579 (2003)
83. Gagnon, E., Cattaruzzi, P., Griffith, M.: Human vascular endothelial cells with extended life
spans: in vitro cell response, protein expression, and angiogenesis. Angiogenesis 5, 21-33
(2002)
84. Nicosia, R.F., Tchao, R., Leighton, J.: Angiogenesis-dependent tumor spread in reinforced
fibrin clot culture. Cancer Bes. 43, 2159-2166 (1983)
85. Nakatsu, M.N., Hughes, C.C.: An optimized three-dimensional in vitro model for the
analysis of angiogenesis. Methods Enzymol. 443, 65-82 (2008)
86. Conway, E.M., Collen, D., Carmeliet, P.: Molecular mechanisms of blood vessel growth.
Cardiovasc. Res. 49, 507-521 (2001)
87. Vailhé, B., Vittet, D., Feige, J-.J.: In vitro models of vasculogenesis and angiogenesis. Lab.
Invest. 81(4), 439-452 (2001)
88. Barkefors, I., Thorslund, S., Nikolajeff, F., Kreuger, J.: A fluidic device to study directional
abgiogenesis in complex tissue and organ culture models. Lab. Chip 9, 529-535 (2009)
89. Carrion, B., et al.: Recreating the perivascular niche ex vivo using a microfluidic approach.
Biotechnol. Bioeng. 107(6), 1020-1028 (2010)
90. Chung, S., et al.: Cell migration into scaffolds under co-culture conditions in a microfluidic
platform. Lab. Chip 9, 269-275 (2009)
91. Jeong, G.S., et al.: Microfluidic assay of endothelial cell migration in 3D interpenetrating
polymer semi-network HA-Collagen hydrogel. Biomed. Microdevices 13(4), 717-723 (2011)
92. Yamamura, N., Sudo, R., Ikeda, M., Tanishita, K.: Effects of the mechanical properties of
collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue
Eng. 13, 1443-1453 (2007)
93. Shin, Y., et al.: In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and
VEGF gradients. Lab. Chip 11, 2175-2181 (2011)
94. Kang, H., Bayless, K.J., Kaunas, R.: Fluid shear stress modulates endothelial cell invasion
into three-dimensional collagen matrices. Am. J. Physiol. Heart Circ. Physiol. 295, H2087-
H2097 (2008)
95. Tarbell, J.M.: Shear stress and endothelial transport barrier. J Cardiovasc. Res. 87, 329-330
(2010)
96. Sarin, H., et al.: Physiologic upper limit of pore size in the blood-tumor barrier of malignant
solid tumors. J. Transl. Med. 7, 51 (2009)
97. Vera, R.H., et al.: Interstitial fluid flow intensity modulates endothelial sprouting in restricted src-
activated cell clusters during capillary morphogenesis. Tissue Eng. Part A 15(1), 175-185 (2009)
98. Song,
J.W.,
Munn,
L.L.:
Fluid
forces
control
endothelial
sprouting.
PNAS
108(37),
15342-15347 (2011)
99. DeMaio, L., Tarbell, J.M., Scaduto Jr, R.C., Gardner, T.W., Antonetti, D.A.: A transmural
pressure gradient induces mechanical and biological adaptive responses in endothelial cells.
Am. J. Physiol. Heart Circ. Physiol. 286(2H), 731-741 (2004)
Search WWH ::




Custom Search