Biomedical Engineering Reference
In-Depth Information
24. Wilding,
P.,
et
al.:
Manipulation
and
flow
of
biological
fluids
in
straight
channels
micromachined in silicon. Clin. Chem. 40, 43-47 (1994)
25. Duffy, D.C., et al.: Rapid prototyping of microfluidic systems in poly(dimethylsiloxane).
Anal. Chem. 70, 4974-4984 (1998)
26. McDonald, J.C., et al.: Fabrication of microfluidic system in poly(dimethylsiloxane).
Electrophoresis 21, 27-40 (2000)
27. Chovan, T., Guttman, A.: Microfabricated devices in biotechnology and biochemical
processing. Trends Biotechnol. 20(3), 116-122 (2002)
28. Verpoorte, E.: Microfluidic chips for clinical and forensic analysis. Electrophoresis 23(5),
677-712 (2002)
29. Watts, P., Haswell, S.J.: Microfluidic combinatorial chemistry. Curr. Opin. Chem. Biol.
7(3), 380-387 (2003)
30. Breslauer, D.N., Lee, P.J., Lee, L.P.: Microfluidics-based system biology. Mol. BioSyst.
2(2), 97-112 (2006)
31. Andersson, H., Berg, A.: Microfabrication and microfluidics for tissue engineering: sate of
the art and future opportunities. Lab. Chip 4(2), 98-103 (2004)
32. Park, T.H., Shuler, M.L.: Integration of cell culture and microfabrication technology.
Biotechnol. Prog. 19(2), 243-253 (2003)
33. Jain, K.K.: Applications of biochips from diagnostics to personalized medicine. Curr. Opin.
Drug Discov. Devel. 7(3), 285-289 (2004)
34. Wheeler, M.B., et al.: Application of sexed semen technology to in vitro embryo production
in cattle. Theriogenology 65(1), 219-227 (2006)
35. Vickerman, V., et al.: Design, fabrication and implementation of a novel multi-parameter
control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab.
Chip 8, 1468-1477 (2008)
36. Pardanaud, L., Yassine, F., Dieterlen-Lievre, F.: Relationship between vasculogenesis,
angiogenesis and haemopoiesis during avian ontogeny. Dev. 105, 473-485 (1989)
37. James, J.M., Jennifer, L.W.: Vascularization of engineered tissues: approaches to promote
angiogenesis. Curr. Top. Med. Chem. 7, 300-310 (2008)
38. Fong, G.-H.: Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11,
121-140 (2008)
39. Rankin, E.B., Giaccia, A.J.: The role of hypoxia-inducible factors in tumorigenesis. Cell
Death Differ. 15, 678-685 (2008)
40. Bernardini, G., et al.: Analysis of the role of chemokines in angiogenesis. J. Immunol.
Methods 273(1-2), 83-101 (2003)
41. Cassavaugh, J., Lounsbury, K.: Hypoxia-mediated biological control. J. Cell. Biochem. 112,
735-744 (2011)
42. Hickey, M.M., Simon, M.C.: Regulation of angiogenesis by hypoxia and hypoxia-inducible
factors. Curr. Top. Dev. Biol. 76, 217-257 (2006)
43. Shweiki, D., et al.: Vascular endothelial growth factor induced by hypoxia may mediate
hypoxia-initiated angiogenesis. Nature 359, 843-845 (1992)
44. Carmeliet,P, et al.: Abnormal blood vessel development and lethality in embryos lacking a
single VEGF allele. Nature 380(s.l), 435-39 (1996)
45. Ferrara, N., et al.: Heterozygous embryonic lethality induced by targeted inactivation of the
VEGF gene. Nature 380, 439-442 (1996)
46. Park, J.E., et al.: Hypoxic tumor cell modulates its microenvironment to enhance angiogenic
and metastatic potential by secretion of proteins and exosomes. Mol. Cell. Proteomics 9(6),
1085-1099 (2010)
47. Kunz, M., Ibrahim, S.M.: Molecular responses to hypoxia in tumor cells. Mol. Cancer 2(23), (2003)
48. Heinzman, J.M., Browe, S.L., Bush, J.E.: Comparison of angiogenesis- related factor
expression in primary tumor cultures under normal and hypoxic growth conditions. Cancer
Cell Int. 8, 11 (2008)
49. Fukamara, D., et al.: Tumor induction of VEGF promoter activity in stromal cells. Cell 94,
715-725 (1998)
Search WWH ::




Custom Search