Biomedical Engineering Reference
In-Depth Information
50. Tuxhorn, J.A., et al.: Stromal cells promote angiogenesis and growth of human prostate
tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res. 62, 3298-3307
(2002)
51. Darland, D.C., D'Amore, P.A.: Blood vessel maturation: vascular development comes of
age. J. Clin. Invest. 103(2), 157-158 (1999)
52. Szekanecz, Z., Koch, A. E.: Chemokines and cytokines in inflammatory angiogenesis.
[Topic Section] Angiogenesis in inflammation; mechanisms and clinical correlates/topic
auth. Seed Michael P and Walsh David A. [s.l.] Birkhauser Base
53. Kiefer, F., Siekmann, A.F.: The role of chemokines and their receptor in angiogenesis. Cell
Mol. Life Sci. 68, 2811-2830 (2011)
54. Seed, M.P., Walsh, D.A.: Angiogenesis in inflamation; mechanisms and clinical correlates.
Birkhauser Basel, Germany (2008)
55. Nagy, J.A., et al.: Why are tumour blood vessels abnormal and why is it important to know?
Br. J. Cancer 100, 865-869 (2009)
56. Brem, H., Tomic-Canic, M.: Cellular and molecular basis of wound healing in diabetes.
J. Clin. Invest. 117, 1219-1222 (2007)
57. Eming, S.A., Krieg, T., Davidson, J.M.: Gene therapy and wound healing. Clin. Dermatol.
25, 79-92 (2007)
58. Takeshita, S., et al.: Therapeutic angiogenesis: a single intra-arterial bolus of vascular
endothelial growth factor augments sollateral vessel formation in a rabbit ischemic hind-
limb model. J. Clin. Invest. 93, 662-670 (1994)
59. Cao, R., et al.: Angiogenic synergy, vascular stability and improvement of hind-limb
ischemia by a combination PDGF-BB and FGF-2. Nat. Med. 9, 604-613 (2003)
60. Nikol, S., et al.: Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-
free survival in patients with critical limb ischemia. Mol. Ther. 16, 972-978 (2008)
61. Thackham, J.A., McElwain, D.L., Long, R.J.: The use of hyperbaric oxygen therapy to treat
chronic wounds: a review. Wound Repair Regen. 16, 321-330 (2008)
62. Cipolla, J., et al.: Negative pressure wound therapy: unusual and innovative applications.
OPUS 12. Scientist 2, 15-29 (2008)
63. Baldwin, C., et al.: Topical negative pressure stimulates endothelial migration and
proliferation: a suggested mechanism for improved integration of Integra. Ann. Plast. Surg.
62, 92-96 (2009)
64. Potter,
M.J.,
et
al.:
In
vitro
optimization
of
topical
negative
pressure
regimens
for
angiogenesis into synthetic dermal replacements. Burns 34, 164-174 (2008)
65. Umit, A., et al.: Regulation of angiogenic activity of human endometrial endothelial cells in
culture by ovarian steroids. J. Clin. Endocrinol. Metab. 62(11), 5794-5802 (2004)
66. Nagel, T., et al.: Shear stresses selectively upregulates intercellular adhesion molecule-1
expression in cultured human vascular endothelial cells. J. Clin. Invest. 94, 885-891 (1994)
67. Davies, P.F., Tripathi, S.C.: Mechanical stress mechanisms and the cell: an endothelial
paradigm. Circ. Res. 72, 239-245 (1993)
68. Davies,
P.F.:
Hemodynamic
shear
stress
and
the
endothelium
in
cardiovascular
pathophysiology. Nat. Rev. Cardiol. 6, 16-26 (2009)
69. Li, Z., Guan, J.: Hydrogels for cardiac tissue engineering. Polymers 3, 740-761 (2011)
70. Even-Ram, S., Yamada, K.M.: Cell migration in 3D matrix. Curr. Opin. Cell Biol. 17,
524-532 (2005)
71. Therriault, D., White, S.R., Lewis, J.A.: Chaotic mixing in three-dimensional microvascular
networks fabricated by direct-write assembly. Nat. Mater. 2, 265-271 (2003)
72. Lim, D., et al.: Fabrication of microfluidic mixers and artificial vasculatures using a high-
brightness diode-pumped Nd:YAG laser direct write method. Lab. Chip 3, 318-323 (2003)
73. Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.: Geometric control of
cell life and death. Science 276(30), 1425-1428 (1997)
74. Johnson, M., Liddiard, G., Eddings, M., Gale, B.: Bubble inclusion and removal using
PDMS membrane-based gas permeation for applications in pumping, valving and mixing in
microfluidic devices. J. Micromech. Microeng. 19, 1-9 (2009)
Search WWH ::




Custom Search