Biomedical Engineering Reference
In-Depth Information
53. Ledzewicz, U., Marriott, J., Maurer, H., Schattler, H.: Realizable protocols for optimal
administration of drugs in mathematical models for anti-angiogenic treatment. Math. Med.
Biol. 27 (2), 157-179 (2010)
54. Ledzewicz, U., Naghnaeian, M., Schattler, H.: Optimal response to chemotherapy for a
mathematical model of tumor-immune dynamics. J. Math. Biol. 64 (3), 557-77 (2011)
55. Lee, D.S., Rieger, H., Bartha, K.: Flow correlated percolation during vascular remodeling in
growing tumors. Phys. Rev. Lett. 96 (5), 58104 (2006)
56. Macklin, P., McDougall, S., Anderson, A.R., Chaplain, M.A., Cristini, V., Lowengrub, J.:
Multiscale modelling and nonlinear simulation of vascular tumour growth.
J. Math. Biol.
58 (4-5), 765-798 (2009)
57. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set
approach. IEEE PAMI. 17 (2), 158-175 (1995)
58. McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas
automata. Phys. Rev. Lett. 61 (20), 2332 (1988).
59. Migliorini, C., Qian, Y.H., Chen, H., Brown, E., Jain, R.K., Munn, L.L.:. Red blood cells
augment leukocyte rolling in a virtual blood vessel. Biophys. J. 83 , 1834-1841 (2002)
60. Munn, L.L.: Aberrant vascular architecture in tumors and its importance in drug-based
therapies. Drug Discov. Today. 8 , 396-403 (2003)
61. Munn, L.L., Dupin, M.M.: Blood cell interactions and segregation in flow.
Ann. Biomed.
Eng. 36 (4), 534-544 (2008)
62. Nakahara, T., Norberg, S.M., Shalinsky, D.R., Hu-Lowe, D.D., McDonald, D.M.: Effect
of inhibition of vascular endothelial growth factor signaling on distribution of extravasated
antibodies in tumors. Canc. Res. 66 (3), 1434-1445 (2006)
63. Netti, P.A., Roberge, S., Boucher, Y., Baxter, L.T., Jain, R.K.: Effect of transvascular
fluid exchange on arterio-venous pressure relationship: Implication for temporal and spatial
heterogeneities in tumor blood flow. Microvasc. Res. 52 , 27-46 (1996)
64. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms
based on hamilton-jacobi formulations. J. Comput. Phys. 79 (1), 12-49 (1988)
65. Pries, A.R., Reglin, B., Secomb, T.W.: Remodeling of blood vessels: Responses of diameter
and wall thickness to hemodynamic and metabolic stimuli.
Hypertension. 46 (4), 725-731
(2005)
66. Pries, A.R., Secomb, T.W.: Modeling structural adaptation of microcirculation. Microcircu-
lation. 15 (8), 753-764 (2008)
67. Pries, A.R., Secomb, T.W.: Origins of heterogeneity in tissue perfusion and metabolism.
Cardiovasc. Res. 81 (2), 328-335, (2009)
68. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Structural adaptation and stability of microvascular
networks: theory and simulations. Am. J. Physiol. 275 (2 Pt 2), H349-60 (1998)
69. Pries, A.R., Secomb, T.W., Gaehtgens, P.:
Design principles of vascular beds.
Circ. Res.
77 (5), 1017-1023 (1995)
70. Qian, Y.H., d'Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation.
Europhys. Lett. 17 , 479 (1992)
71. Reglin, B., Secomb, T.W., Pries, A.R.: Structural adaptation of microvessel diameters in
response to metabolic stimuli: Where are the oxygen sensors?
Am. J. Physiol. Heart. Circ.
Physiol. 297 (6), H2206 (2009)
72. Schattler, H., Ledzewicz, U., Cardwell, B.: Robustness of optimal controls for a class of
mathematical models for tumor anti-angiogenesis. Math. Biosci. Eng. 8 (2), 355-369 (2011)
73. Schugart, R.C., Friedman, A., Zhao, R., Sen, C.K.:
Wound angiogenesis as a function of
tissue oxygen tension: A mathematical model.
Proc. Natl. Acad. Sci. USA. 105 (7), 2628-
2633 (2008)
74. Sherwood, L.M., Parris, E.E., Folkman, J.: Tumor angiogenesis: Therapeutic implications.
NewEngl.J.Med. 285 (21), 1182-1186 (1971)
75. Shi, Y., Karl, W.C.: A fast level set method without solving pdes. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing, pages -, Mark (2005)
Search WWH ::




Custom Search