Biomedical Engineering Reference
In-Depth Information
76. Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting.
Proc. Natl. Acad. Sci.
108 (37), 15342-15347 (2011)
77. Staub, N.C.: Alveolar-arterial oxygen tension gradient due to diffusion . J. Appl. Physiol. 18,
673-680 (1963)
78. Stockmann, C., Doedens, A., Weidemann, A., Zhang, N., Takeda, N., Greenberg, J.I.,
Cheresh, D.A., Johnson, R.S.: Deletion of vascular endothelial growth factor in myeloid
cells accelerates tumorigenesis. Nature. 456 (7223), 814-818 (2008)
79. Succi, S.:
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond .
Oxford
University Press, Oxford (2001)
80. Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists
and Engineers. Springer, New York (2007)
81. Sun, C., Jain, R.K., Munn, L.L.: Non-uniform plasma leakage affects local hematocrit and
blood flow: implications for inflammation and tumor perfusion. Ann. Biomed. Eng. 35 (12),
2121-2129 (2007)
82. Sun, C., Munn, L.L.: Lattice Boltzmann simulation of blood flow in digitized vessel networks.
Comput. Math. Appl. 55 (7), 1594-1600 (2008)
83. Sun, C.H., Hsu, A.T.: Three-dimensional lattice Boltzmann model for compressible flows.
Phys. Rev. E. 68 (1), 016303-1-14 (2003)
84. Sun, C.H.,Munn, L.L.: Particulate nature of blood determines macroscopic rheology: A 2-D
lattice Boltzmann analysis. Biophys. J. 88 (3), 1635-1645 (2005)
85. Sun, C.H., Munn, L.L.: Influence of erythrocyte aggregation on leukocyte margination in
postcapillary expansions: A lattice-Boltzmann analysis. Physica A. 362 , 191-196 (2006)
86. Sun, S., Wheeler, M.F., Obeyesekere, M., Patrick, C.W.: A deterministic model of growth
factor-induced angiogenesis. Bull Math. Biol. 67 (2), 313-337 (2005)
87. Szczerba, D., Szekely, G.: Computational model of flow-tissue interactions in intussusceptive
angiogenesis. J. Theor. Biol. 234 (1), 87-97 (2005)
88. Tong, R.T., Boucher, Y., Kozin, S.V., Winkler, F., Hicklin, D.J., Jain, R.K.: Vascular
normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure
gradient across the vasculature and improves drug penetration in tumors. Canc. Res. 64 (11),
3731-3736 (2004)
89. Tyrrell, J.A., Mahadevan, V., Tong, R., Brown, E., Roysam, B., Jain, R.K.: Modeling and
analysis of multiphoton tumor microvasculature data using super-gaussians. Microvasc. Res.
70 (3), 149-162 (2005)
90. Tyrrell, J.A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R.K., Roysam, B.: Robust
3-d modeling of vasculature imagery using superellipsoids. IEEE. Trans. Med. Imag. 26 (2),
223-237 (2007)
91. Tyrrell, J.A., Roysam, B., di Tomaso, E., Tong, R., Brown, E.B., Jain, R.K.:
Robust 3-d
modeling of tumor microvasculature using superellipsoids.
In: ISBI, pp. 185-188. IEEE
(2006)
92. Vosseler, S., Mirancea, N., Bohlen, P., Mueller, M.M., Fusenig, N.E.: Angiogenesis inhibition
by vascular endothelial growth factor receptor-2 blockade reduces stromal matrix metallo-
proteinase expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in
surface heterotransplants. Canc. Res. 65 (4), 1294-1305 (2005)
93. Waite, L., Fine, J.: Applied BioFluid Mechanics. McGraw-Hill, New York (2007)
94. Walsh, Stuart D.C., Burwinklea, H., O Saar, M.: A new partial-bounceback lattice-Boltzmann
method for fluid flow through heterogeneous media .
Comput. Geosci. 35 (6), 1186-1193
(2008)
95. Welter, M., Bartha, K., Rieger, H.: Vascular remodelling of an arterio-venous blood vessel
network during solid tumour growth. J. Theor. Biol. 259 (3), 405-422 (2009)
96. Willett, C.G., Boucher, Y., di Tomaso, E., Duda, D.G., Munn, L.L., Tong, R.T., Chung, D.C.,
Sahani, D.V., Kalva, S.P., Kozin, S.V., Mino, M., Cohen, K.S., Scadden, D.T., Hartford,
A.C., Fischman, A.J., Clark, J.W., Ryan, D.P., Zhu, A.X., Blaszkowsky, L.S., Chen, H.X.,
Shellito, P.C., Lauwers, G.Y., Jain, R.K.:
Direct evidence that the VEGF-specific antibody
Search WWH ::




Custom Search