Biomedical Engineering Reference
In-Depth Information
30. De Mattei M., Caruso A., Traina G. C., Pezzetti F., Baroni T., Sollazzo V.
Correlation between pulsed electromagnetic fields exposure time and cell pro-
liferation increase in human osteosarcoma cell lines and human normal osteo-
blast cells in vitro. Bioelectromagnetics 20 (3): 177-182 (1999).
31. Diniz P., Shomura K., Soejima K., Ito G. Effects of pulsed electromagnetic field
(PEMF) stimulation on bone tissue like formation are dependent on the matura-
tion stages of the osteoblasts. Bioelectromagnetics 23 (5): 398-405 (2002).
32. McLeod K. J., Collazo L. Suppression of a differentiation response in MC-3T3-E1
osteoblast-like cells by sustained, low-level, 30 Hz magnetic-field exposure.
Radiation Research 153 (5): 706-714 (2000).
33. Kroll M. Parathyroid hormone temporal effects on bone formation and resorp-
tion. Bulletin of Mathematical Biology 62 (1): 163-188 (2000).
34. Rattanakul C., Lenbury Y., Krishnamara N., Wolwnd D. J. Modeling of bone
formation and resorption mediated by parathyroid hormone: response to estro-
gen/PTH therapy. Biosystems 70 (1): 55-72 (2003).
35. Komarova S. V., Smith R. J., Dixon S. J., Sims S. M., Wahl L. M. Mathematical
model predicts a critical role for osteoclast autocrine regulation in the control of
bone remodeling. Bone 33 (2): 206-215 (2003).
36. Komarova S. V. Mathematical model of paracrine interactions between osteo-
clasts and osteoblasts predicts anabolic action of parathyroid hormone on bone.
Endocrinology 146 (8): 3589-3595 (2005).
37. Potter L. K., Greller L. D., Cho C. R., Nuttall M. E., Stroup G. B., Suva L. J., Tobin
F. L. Response to continuous and pulsatile PTH dosing: A mathematical model
for parathyroid hormone receptor kinetics. Bone 37 (2): 159-169 (2005).
38. Lemaire V., Tobin F. L., Greller L. D., Cho C. R., Suva L. J. Modeling the interac-
tions between osteoblast and osteoclast activities in bone remodeling. Journal of
Theoretical Biology 229 (3): 293-309 (2004).
39. Wang Y. N., Qin Q. H., Kalyanasundaram S. A theoretical model for simulating
effect of parathyroid hormone on bone metabolism at cellular level. Molecular &
Cellular Biomechanics 6 (2): 101-112 (2009).
40. Wang Y. N., Qin Q. H. Parametric study of control mechanism of cortical bone
remodeling under mechanical stimulus. Acta Mechanica Sinica 26 (1): 37-44 (2010).
41. Qin Q. H., Wang Y. N. A mathematical model of cortical bone remodeling at cel-
lular level under mechanical stimulus. Acta Mechanica Sinica (submitted) (2012).
42. Pivonka P., Zimak J., Smith D. W., Gardiner B. S., Dunstan C. R., Sims N. A.,
Martin J. T., Mundy G. R. Theoretical investigation of the role of the RANK-
RANKL-OPG system in bone remodeling. Journal of Theoretical Biology 262 (2):
306-316 (2010).
43. Defranoux N. A., Stokes C. L., Young D. L., Kahn A. J. In silico modeling and
simulation of bone biology: A proposal. Journal of Bone Mineral Resource 20 (7):
1079-1084 (2005).
44. Chang K., Chang W. H-S., Huang S., Huang S., Shih C. Pulsed electromagnetic
fields stimulation affects osteoclast formation by modulation of osteoprotegerin,
RANK ligand and macrophage colony-stimulating facto. Journal of Orthopaedic
Research 23 (6): 1308-1314 (2005).
45. Schwartz Z., Fisher M., Lohmann C., Simon B., Boyan B. Osteoprotegerin (OPG)
Production by cells in the osteoblast lineage is regulated by pulsed electro-
magnetic fields in cultures grown on calcium phosphate substrates. Annals of
Biomedical Engineering 37 (3): 437-444 (2009).
Search WWH ::




Custom Search