Biomedical Engineering Reference
In-Depth Information
14. Fredericks D. C., Nepola J. V., Baker J. T., Abbott J., Simon B. Effects of pulsed
electromagnetic fields on bone healing in a rabbit tibial osteotomy model.
Journal of Orthopaedic Trauma 14 (2): 93-100 (2000).
15. Chang W. H., Chen L. T., Sun J. S., Lin F. H. Effect of pulse-burst electromagnetic
field stimulation on osteoblast cell activities. Bioelectromagnetics 25 (6): 457-465
(2004).
16. Sun L. Y., Hsieh D. K., Yu T. C., Chiu H. T., Lu S. F., Luo G. H., Kuo T. K.,
Lee O. K., Chiou T. W. Effect of pulsed electromagnetic field on the proliferation
and differentiation potential of human bone marrow mesenchymal stem cells.
Bioelectromagnetics 30 (4): 251-260 (2009).
17. Trock D. H., Bollet A. J., Markoll R. The effect of pulsed electromagnetic fields
in the treatment of osteoarthritis of the knee and cervical spine—Report of
randomized, double-blind, placebo-controlled trials. Journal of Rheumatology
21 (10): 1903-1911 (1994).
18. Chang K., Chang W. H. S. Pulsed electromagnetic fields prevent osteoporosis
in an ovariectomized female rat model: A prostaglandin E-2-associated process.
Bioelectromagnetics 24 (3): 189-198 (2003).
19. Chang K., Chang W. H. S., Wu M. L., Shih C. Effects of different intensities of
extremely low frequency pulsed electromagnetic fields on formation of osteo-
clast-like cells. Bioelectromagnetics 24 (6): 431-439 (2003).
20. Linovitz R. J., Pathria M., Bernhardt M., Green D., Law M. D., McGuire R. A.,
Montesano P. X., et al. Combined magnetic fields accelerate and increase spine
fusion—A double-blind, randomized, placebo controlled study. Spine 27 (13):
1383-1388 (2002).
21. Frost H. M. Intermediary organization of the skeleton. Boca Raton, FL: CRC Press
(1986).
22. Robling A. G., Castillo A. B., Turner C. H. Biomechanical and molecular regula-
tion of bone remodeling. Annual Review of Biomedical Engineering 8: 455-498 (2006).
23. Anderson D. M., Maraskovsky E., Billingsley W. L., Dougall W. C., Tometsko
M.  E., Roux E. R., Teepe M. C., et  al. A homologue of the TNF receptor and
its ligand enhance T-cell growth and dendritic-cell function. Nature 390 (6656):
175-179 (1997).
24. Zaidi M. Skeletal remodeling in health and disease. Nature Medicine 13 (7): 791-
801 (2007).
25. Pivonka P., Zimak J., Smith D. W., Gardiner B. S., Dunstan C. R., Sims N. A.,
Martin J. T., Mundy G. R. Model structure and control of bone remodeling:
A theoretical study. Bone 43 (2): 249-263 (2008).
26. Lohmann C. H., Schwartz Z., Liu Y., Li Z., Simon B. J., Sylvia V. L., Dean D. D.,
et  al. Pulsed electromagnetic fields affect phenotype and connexin 43 protein
expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells.
Journal of Orthopaedic Research 21 (2): 326-334 (2003).
27. McLeod K. J., Rubin C. T. The effect of low-frequency electrical fields on osteo-
genesis. Journal of Bone and Joint Surgery, American vol. 74A (6): 920-929 (1992).
28. Vander Molen M. A., Donahue H. J., Rubin C. T., McLeod K. J. Osteoblastic net-
works with deficient coupling: Differential effects of magnetic and electric field
exposure. Bone 27 (2): 227-231 (2000).
29. Tabrah F., Hoffmeier M., Gilbert F., Batkin S., Bassett C. A. L. Bone-density
changes in osteoporosis-prone women exposed to pulsed electromagnetic fields
(PEMFs). Journal of Bone Mineral Research 5 (5): 437-442 (1990).
Search WWH ::




Custom Search