Biomedical Engineering Reference
In-Depth Information
7. Gjelsvik A. Bone remodeling and piezoelectricity—I. Journal of Biomechanics
6 (1): 69-77 (1973).
8. Gjelsvik A. Bone remodeling and piezoelectricity—II. Journal of Biomechanics
6 (2): 187-193 (1973).
9. Martin R. B., Burr D. B. A hypothetical mechanism for the stimulation of
osteonal remodeling by fatigue damage. Journal of Biomechanics 15 (3): 137-139
(1982).
10. Beaupre G. S., Orr T. E., Carter D. R. An approach for time-dependent bone
modeling and remodeling—Theoretical development. Journal of Orthopaedic
Research 8 (5): 651-661 (1990).
11. Beaupre G. S., Orr T. E., Carter D. R. An approach for time-dependent bone
modeling and remodeling—Application—A preliminary remodeling simula-
tion. Journal of Orthopaedic Research 8 (5): 662-670 (1990).
12. Qin Q. H., Ye J. Q. Thermoelectroelastic solutions for internal bone remodeling
under axial and transverse loads. International Journal of Solids and Structures
41 (9-10): 2447-2460 (2004).
13. Carter D. R., Orr T. E., Fyhrie D. P. Relationships between loading history and
femoral cancellous bone architecture. Journal of Biomechanics 22 (3): 231-244
(1989).
14. Hart R. T., Davy D. T., Heiple K. G. A computational method for stress analysis
of adaptive elastic materials with a view toward applications in strain-induced
bone remodeling. Journal of Biomechanical Engineering—Transactions of the ASME
106 (4): 342-350 (1984).
15. Huiskes R., Weinans H., Grootenboer H. J., Dalstra M., Fudala B., Slooff T. J.
Adaptive bone-remodeling theory applied to prosthetic-design analysis. Journal
of Biomechanics 20 (11-12): 1135-1150 (1987).
16. Prendergast P. J., Taylor D. Prediction of bone adaptation using damage accu-
mulation. Journal of Biomechanics 27 (8): 1067-1076 (1994).
17. Turner C. H., Anne V., Pidaparti R. M. V. A uniform strain criterion for trabec-
ular bone adaptation: Do continuum-level strain gradients drive adaptation?
Journal of Biomechanics 30 (6): 555-563 (1997).
18. Bassett C. A. L., Valdes M. G., Hernandez E. Modification of fracture repair
with selected pulsing electromagnetic fields. Journal of Bone and Joint Surgery,
American vol. 64 (6): 888-895 (1982).
19. McLeod K. J., Rubin C. T. The effect of low-frequency electrical fields on osteo-
genesis. Journal of Bone and Joint Surgery, American vol. 74A (6): 920-929 (1992).
20. Giordano N., Battisti E., Geraci S., Fortunato M., Santacroce C., Rigato M.,
Gennari L., Gennari C. Effect of electromagnetic fields on bone mineral density
and biochemical markers of bone turnover in osteoporosis: A single-blind, ran-
domized pilot study. Current Therapeutic Research—Clinical and Experimental 62
(3): 187-193 (2001).
21. Korenstein R., Somjen D., Fischler H., Binderman I. Capacitative pulsed electric-
stimulation of bone-cells—Induction of cyclic amp changes and DNA synthesis.
Biochimica et Biophysica Acta 803 (4): 302-307 (1984).
22. Luben R. A., Cain C. D., Chen M. C. Y., Rosen D. M., Adey W. R. Effects of
electromagnetic stimuli on bone and bone cells in vitro—inhibition of responses
to parathyroid hormone by low-energy low-frequency fields. Proceedings of
National Academy of Sciences of the United States of America—Biological Sciences
79 (13): 4180-4184 (1982).
Search WWH ::




Custom Search