Biomedical Engineering Reference
In-Depth Information
23. Friedenb, Zb., Zemsky L. M., Pollis R. P., Brighton C. T. Response of
nontraumatized bone to direct current. Journal of Bone and Joint Surgery,
American vol. A 56 (5): 1023-1030 (1974).
24. Lavine L. S., Lustrin I., Shamos M. H., Moss M. L. Influence of electric current on
bone regeneration in vivo. Acta Orthopaedica Scandinavica 42 (4): 305-314 (1971).
25. Brighton C. T., Friedenberg Z. B., Zemsky L. M., Pollis P. R. Direct-current stim-
ulation of non-union and congenital pseudarthrosis—Exploration of its clinical
application. Journal of Bone and Joint Surgery, American vol. A 57 (3): 368-377
(1975).
26. Sharrard W. J. W., Sutcliffe M. L., Robson M. J., Maceachern A. G. The treat-
ment of fibrous non-union of fractures by pulsing electromagnetic stimulation.
Journal of Bone and Joint Surgery, British vol. 64 (2): 189-193 (1982).
27. Lammens J., Liu Z. D., Aerssens J., Dequeker J., Fabry G. Distraction bone heal-
ing versus osteotomy healing: A comparative biochemical analysis. Journal of
Bone Mineral Resource 13 (2): 279-286 (1998).
28. Weinreb M., Suponitzky I., Keila S. Systemic administration of an anabolic dose
of PGE(2) in young rats increases the osteogenic capacity of bone marrow.
Bone  20 (6): 521-526 (1997).
29. Fitzsimmons R. J., Strong D. D., Mohan S., Baylink D. J. Low-amplitude,
low-frequency electric field-stimulated bone cell proliferation may in part be medi-
ated by increased igf-ii release. Journal of Cellular Physiology 150 (1): 84-89 (1992).
30. Nagai M., Ota M. Pulsating electromagnetic field stimulates messenger RNA
expression of bone morphogenetic protein-2 and protein-4. Journal of Dental
Research 73 (10): 1601-1605 (1994).
31. Zhuang H. M., Wang W., Seldes R. M., Tahernia A. D., Fan H. J., Brighton C.
T. Electrical stimulation induces the level of TGF-beta 1 mRNA in osteoblastic
cells by a mechanism involving calcium/calmodulin pathway. Biochemical and
Biophysical Research Communications 237 (2): 225-229 (1997).
32. Fukada E., Yasuda I. On the piezoelectric effect of bone. Journal of the Physical
Society of Japan 12 (10): 1158-1162 (1957).
33. Qin Q. H. Multifield bone remodeling under axial and transverse loads. In
New research on biomaterials, ed. Boomington D. R., pp. 49-91. New York: Nova
Science Publishers (2007).
34. Kelly P. J., Bronk J. T. Venous pressure and bone formation. Microvascular
Research 39 (3): 364-375 (1990).
35. Lanyon L. E. Functional strain as a determinant for bone remodeling. Calcified
Tissue International 36:S56-S61 (1984).
36. Turner C. H. Three rules for bone adaptation to mechanical stimuli. Bone 23 (5):
399-407 (1998).
37. Frost H. M. Bone's Mechanostat: A 2003 update. Anatomical Record Part
A— Discoveries in Molecular Cellular and Evolutionary Biology 275A (2): 1081-1101
(2003).
38. Frost H. M. Bone mass and the Mechanostat—A proposal. Anatomical Record 219
(1): 1-9 (1987).
39. Frost H. M. Perspectives: A proposed general model of the “mechanostat” (sug-
gestions from a new skeletal-biologic paradigm). Anatomical Record 244 (2):
139-147 (1996).
40. Rubin C. T., Lanyon L. E. Regulation of bone mass by mechanical strain magni-
tude. Calcified Tissue International 37 (4): 411-417 (1985).
Search WWH ::




Custom Search