Biomedical Engineering Reference
In-Depth Information
64. Nakamura S (2010) Additional oscillation can facilitate visually induced self-motion percep-
tion: the effects of its coherence and amplitude gradient. Perception 39(3):320-329. doi: 10.
1068/p6534
65. Nakamura S, Shimojo S (1999) Critical role of foreground stimuli in perceiving visually
induced self-motion (vection). Perception 28(7):893-902
66. Nichols S, Patel H (2002) Health and safety implications of virtual reality: a review of empir-
ical evidence. Appl Ergonomics 33(3):251-271. doi: 10.1016/S0003-6870(02)00020-0
67. Ohmi M, Howard IP (1988) Effect of stationary objects on illusory forward self-motion
induced by a looming display. Perception 17(1):5-12. doi: 10.1068/p170005
68. Ohmi M, Howard IP, Landolt JP (1987) Circular vection as a function of foreground-
background relationships. Perception 16(1):17-22
69. Onimaru S, Sato T, Kitazaki M (2010) Veridical walking inhibits vection perception. J Vis
10(7):860. doi: 10.1167/10.7.860
70. Palmisano S (1996) Perceiving self-motion in depth: The role of stereoscopic motion and
changing-size cues. Percept Psychophysics 58(8):1168-1176
71. Palmisano S, Allison RS, Howard IP (2006) Illusory scene distortion occurs during perceived
self-rotation in roll. Vis Res 46(23):4048-4058. doi: 10.1016/j.visres.2006.07.020
72. Palmisano S, Allison RS, Kim J, Bonato F (2011) Simulated viewpoint jitter shakes
sensory
conflict
accounts
of
vection.
Seeing
Perceiving
24(2):173-200.
doi: 10.1163/
187847511X570817
73. Palmisano S, Bonato F, Bubka A, Folder J (2007) Vertical display oscillation effects on forward
vection and simulator sickness. Aviat Space Environ Med 78(10):951-956
74. Palmisano S, Burke D, Allison RS (2003) Coherent perspective jitter induces visual illusions
of self- motion. Perception 32(1):97-110
75. Palmisano S, Chan AYC (2004) Jitter and size effects on vection are immune to experimental
instructions and demands. Perception 33(8):987-1000
76. Palmisano S, Gillam B (1998) Stimulus eccentricity and spatial frequency interact to determine
circular vection. Perception 27(9):1067-1077
77. Palmisano S, Gillam BJ, Blackburn SG (2000) Global-perspective jitter improves vection in
central vision. Perception 29(1):57-67
78. Palmisano S, Keane S (2004) Effect of visual jitter on visual-vestibular interaction during
vection. Aust J Psychol 56(Suppl. S):213
79. Post RB (1988) Circular vection is independent of stimulus eccentricity. Perception 17(6):737-
744. doi : 10.1068/p170737
80. Presson CC, Montello DR (1994) Updating after rotational and translational body move-
ments: coordinate structure of perspective space. Perception 23(12):1447-1455. doi: 10.1068/
p231447
81. Prothero JD, Hoffman HG, Parker DE, Furness TA, Wells MJ (1995) Foreground/background
manipulations affect presence. Proc Hum Factors Ergon Soc Ann Meet 39(21):1410-1414.
doi: 10.1177/154193129503902111
82. Prothero JD, Parker DE (2003) A unified approach to presence and motion sickness. In:
Hettinger LJ, Haas MW (eds) Virtual and adaptive environments: applications, implications,
and human performance issues. Lawrence Erlbaum, New York, pp 47-66
83. Riecke BE (2003) How far can we get with just visual information? Path integration and
spatial updating studies in virtual reality. vol. 8, Berlin http://www.logos-verlag.de/cgi-bin/
buch/isbn/0440
84. Riecke BE (2006) Simple user-generated motion cueing can enhance self-motion perception
(Vection) in virtual reality. In: Proceedings of the ACM symposium on virtual reality soft-
ware and technology (VRST) Limassol, ACM, Cyprus, pp 104-107. doi: 10.1145/1180495.
1180517
85. Riecke BE (2009) Cognitive and higher-level contributions to illusory self-motion perception
(“vection”): does the possibility of actual motion affect vection? Jpn J Psychon Sci 28(1):135-
139
 
 
 
Search WWH ::




Custom Search